Usage
ard_categorical_ci(data, ...)
# S3 method for class 'data.frame'
ard_categorical_ci(
data,
variables,
by = dplyr::group_vars(data),
method = c("waldcc", "wald", "clopper-pearson", "wilson", "wilsoncc", "strat_wilson",
"strat_wilsoncc", "agresti-coull", "jeffreys"),
denominator = c("column", "row", "cell"),
conf.level = 0.95,
value = list(where(is_binary) ~ 1L, where(is.logical) ~ TRUE),
strata = NULL,
weights = NULL,
max.iterations = 10,
...
)
Arguments
- data
(
data.frame
)
a data frame- ...
Arguments passed to methods.
- variables
(
tidy-select
)
columns to include in summaries. Columns must be class<logical>
or<numeric>
values coded asc(0, 1)
.- by
(
tidy-select
)
columns to stratify calculations by.- method
(
string
)
string indicating the type of confidence interval to calculate. Must be one of . See?proportion_ci
for details.- denominator
(
string
)
Must be one of'column'
(default),'row'
, and'cell'
, which specifies the direction of the calculation/denominator. Argument is similar tocards::ard_categorical(denominator)
.- conf.level
(
numeric
)
a scalar in(0, 1)
indicating the confidence level. Default is0.95
- value
(
formula-list-selector
)
function will calculate the CIs for all levels of the variables specified. Use this argument to instead request only a single level by summarized. Default islist(where(is_binary) ~ 1L, where(is.logical) ~ TRUE)
, where columns coded as0
/1
andTRUE
/FALSE
will summarize the1
andTRUE
levels.- strata, weights, max.iterations
arguments passed to
proportion_ci_strat_wilson()
, whenmethod='strat_wilson'
Examples
# compute CI for binary variables
ard_categorical_ci(mtcars, variables = c(vs, am), method = "wilson")
#> {cards} data frame: 20 x 9
#> variable variable_level context stat_name stat_label stat
#> 1 vs 1 proporti… N N 32
#> 2 vs 1 proporti… conf.level conf.lev… 0.95
#> 3 vs 1 proporti… estimate estimate 0.438
#> 4 vs 1 proporti… statistic statistic 0.5
#> 5 vs 1 proporti… p.value p.value 0.48
#> 6 vs 1 proporti… parameter parameter 1
#> 7 vs 1 proporti… conf.low conf.low 0.282
#> 8 vs 1 proporti… conf.high conf.high 0.607
#> 9 vs 1 proporti… method method Wilson C…
#> 10 vs 1 proporti… alternative alternat… two.sided
#> 11 am 1 proporti… N N 32
#> 12 am 1 proporti… conf.level conf.lev… 0.95
#> 13 am 1 proporti… estimate estimate 0.406
#> 14 am 1 proporti… statistic statistic 1.125
#> 15 am 1 proporti… p.value p.value 0.289
#> 16 am 1 proporti… parameter parameter 1
#> 17 am 1 proporti… conf.low conf.low 0.255
#> 18 am 1 proporti… conf.high conf.high 0.577
#> 19 am 1 proporti… method method Wilson C…
#> 20 am 1 proporti… alternative alternat… two.sided
#> ℹ 3 more variables: fmt_fn, warning, error
# compute CIs for each level of a categorical variable
ard_categorical_ci(mtcars, variables = cyl, method = "jeffreys")
#> {cards} data frame: 18 x 9
#> variable variable_level context stat_name stat_label stat
#> 1 cyl 4 proporti… N N 32
#> 2 cyl 4 proporti… estimate estimate 0.344
#> 3 cyl 4 proporti… conf.low conf.low 0.198
#> 4 cyl 4 proporti… conf.high conf.high 0.516
#> 5 cyl 4 proporti… conf.level conf.lev… 0.95
#> 6 cyl 4 proporti… method method Jeffreys…
#> 7 cyl 6 proporti… N N 32
#> 8 cyl 6 proporti… estimate estimate 0.219
#> 9 cyl 6 proporti… conf.low conf.low 0.104
#> 10 cyl 6 proporti… conf.high conf.high 0.382
#> 11 cyl 6 proporti… conf.level conf.lev… 0.95
#> 12 cyl 6 proporti… method method Jeffreys…
#> 13 cyl 8 proporti… N N 32
#> 14 cyl 8 proporti… estimate estimate 0.438
#> 15 cyl 8 proporti… conf.low conf.low 0.277
#> 16 cyl 8 proporti… conf.high conf.high 0.609
#> 17 cyl 8 proporti… conf.level conf.lev… 0.95
#> 18 cyl 8 proporti… method method Jeffreys…
#> ℹ 3 more variables: fmt_fn, warning, error