Analysis results data for survival quantiles and x-year survival estimates, extracted
from a survival::survfit()
model.
Arguments
- x
(
survival::survfit()
)
asurvival::survfit()
object. See below for details.- times
(
numeric
)
a vector of times for which to return survival probabilities.- probs
(
numeric
)
a vector of probabilities with values in (0,1) specifying the survival quantiles to return.- type
-
(
string
orNULL
)
type of statistic to report. Available for Kaplan-Meier time estimates only, otherwisetype
is ignored. Default isNULL
. Must be one of the following:type transformation "survival"
x
"risk"
1 - x
"cumhaz"
-log(x)
Details
Only one of either the
times
orprobs
parameters can be specified.Times should be provided using the same scale as the time variable used to fit the provided survival fit model.
Examples
library(survival)
library(ggsurvfit)
survfit(Surv_CNSR(AVAL, CNSR) ~ TRTA, cards::ADTTE) |>
ard_survival_survfit(times = c(60, 180))
#> {cards} data frame: 30 x 11
#> group1 group1_level variable variable_level stat_name stat_label stat
#> 1 TRTA Placebo time 60 n.risk Number o… 59
#> 2 TRTA Placebo time 60 estimate Survival… 0.768
#> 3 TRTA Placebo time 60 std.error Standard… 0.047
#> 4 TRTA Placebo time 60 conf.high CI Upper… 0.866
#> 5 TRTA Placebo time 60 conf.low CI Lower… 0.682
#> 6 TRTA Placebo time 180 n.risk Number o… 35
#> 7 TRTA Placebo time 180 estimate Survival… 0.626
#> 8 TRTA Placebo time 180 std.error Standard… 0.056
#> 9 TRTA Placebo time 180 conf.high CI Upper… 0.746
#> 10 TRTA Placebo time 180 conf.low CI Lower… 0.526
#> ℹ 20 more rows
#> ℹ Use `print(n = ...)` to see more rows
#> ℹ 4 more variables: context, fmt_fn, warning, error
survfit(Surv_CNSR(AVAL, CNSR) ~ TRTA, cards::ADTTE) |>
ard_survival_survfit(probs = c(0.25, 0.5, 0.75))
#> {cards} data frame: 27 x 11
#> group1 group1_level variable variable_level stat_name stat_label stat
#> 1 TRTA Placebo prob 0.25 estimate Survival… 70
#> 2 TRTA Placebo prob 0.25 conf.high CI Upper… 177
#> 3 TRTA Placebo prob 0.25 conf.low CI Lower… 35
#> 4 TRTA Placebo prob 0.5 estimate Survival… NA
#> 5 TRTA Placebo prob 0.5 conf.high CI Upper… NA
#> 6 TRTA Placebo prob 0.5 conf.low CI Lower… NA
#> 7 TRTA Placebo prob 0.75 estimate Survival… NA
#> 8 TRTA Placebo prob 0.75 conf.high CI Upper… NA
#> 9 TRTA Placebo prob 0.75 conf.low CI Lower… NA
#> 10 TRTA Xanomeli… prob 0.25 estimate Survival… 14
#> ℹ 17 more rows
#> ℹ Use `print(n = ...)` to see more rows
#> ℹ 4 more variables: context, fmt_fn, warning, error
# Competing Risks Example ---------------------------
set.seed(1)
ADTTE_MS <- cards::ADTTE %>%
dplyr::mutate(
CNSR = dplyr::case_when(
CNSR == 0 ~ "censor",
runif(dplyr::n()) < 0.5 ~ "death from cancer",
TRUE ~ "death other causes"
) %>% factor()
)
survfit(Surv(AVAL, CNSR) ~ TRTA, data = ADTTE_MS) %>%
ard_survival_survfit(times = c(60, 180))
#> Multi-state model detected. Showing probabilities into state 'death from
#> cancer'.
#> {cards} data frame: 30 x 11
#> group1 group1_level variable variable_level stat_name stat_label stat
#> 1 TRTA Placebo time 60 n.risk Number o… 59
#> 2 TRTA Placebo time 60 estimate Survival… 0.054
#> 3 TRTA Placebo time 60 std.error Standard… 0.026
#> 4 TRTA Placebo time 60 conf.high CI Upper… 0.14
#> 5 TRTA Placebo time 60 conf.low CI Lower… 0.021
#> 6 TRTA Placebo time 180 n.risk Number o… 35
#> 7 TRTA Placebo time 180 estimate Survival… 0.226
#> 8 TRTA Placebo time 180 std.error Standard… 0.054
#> 9 TRTA Placebo time 180 conf.high CI Upper… 0.361
#> 10 TRTA Placebo time 180 conf.low CI Lower… 0.142
#> ℹ 20 more rows
#> ℹ Use `print(n = ...)` to see more rows
#> ℹ 4 more variables: context, fmt_fn, warning, error