The analyze function coxph_pairwise() creates a layout element to analyze a pairwise Cox-PH model.
This function can return statistics including p-value, hazard ratio (HR), and HR confidence intervals from both
stratified and unstratified Cox-PH models. The variable(s) to be analyzed is specified via the vars argument and
any stratification factors via the strata argument.
Usage
coxph_pairwise(
lyt,
vars,
strata = NULL,
control = control_coxph(),
na_str = default_na_str(),
nested = TRUE,
...,
var_labels = "CoxPH",
show_labels = "visible",
table_names = vars,
.stats = c("pvalue", "hr", "hr_ci"),
.stat_names = NULL,
.formats = NULL,
.labels = NULL,
.indent_mods = NULL
)
s_coxph_pairwise(
df,
.ref_group,
.in_ref_col,
.var,
is_event,
strata = NULL,
strat = lifecycle::deprecated(),
control = control_coxph(),
...
)
a_coxph_pairwise(
df,
...,
.stats = NULL,
.stat_names = NULL,
.formats = NULL,
.labels = NULL,
.indent_mods = NULL
)Arguments
- lyt
(
PreDataTableLayouts)
layout that analyses will be added to.- vars
(
character)
variable names for the primary analysis variable to be iterated over.- strata
(
characterorNULL)
variable names indicating stratification factors.- control
-
(
list)
parameters for comparison details, specified by using the helper functioncontrol_coxph(). Some possible parameter options are:pval_method(string)
p-value method for testing the null hypothesis that hazard ratio = 1. Default method is"log-rank"which comes fromsurvival::survdiff(), can also be set to"wald"or"likelihood"(fromsurvival::coxph()).ties(string)
specifying the method for tie handling. Default is"efron", can also be set to"breslow"or"exact". See more insurvival::coxph().conf_level(proportion)
confidence level of the interval for HR.
- na_str
(
string)
string used to replace allNAor empty values in the output.- nested
(
flag)
whether this layout instruction should be applied within the existing layout structure _if possible (TRUE, the default) or as a new top-level element (FALSE). Ignored if it would nest a split. underneath analyses, which is not allowed.- ...
additional arguments for the lower level functions.
- var_labels
(
character)
variable labels.- show_labels
(
string)
label visibility: one of "default", "visible" and "hidden".- table_names
(
character)
this can be customized in the case that the samevarsare analyzed multiple times, to avoid warnings fromrtables.- .stats
-
(
character)
statistics to select for the table.Options are:
'pvalue', 'hr', 'hr_ci', 'n_tot', 'n_tot_events' - .stat_names
(
character)
names of the statistics that are passed directly to name single statistics (.stats). This option is visible when producingrtables::as_result_df()withmake_ard = TRUE.- .formats
(named
characterorlist)
formats for the statistics. See Details inanalyze_varsfor more information on the"auto"setting.- .labels
(named
character)
labels for the statistics (without indent).- .indent_mods
(named
integer)
indent modifiers for the labels. Defaults to 0, which corresponds to the unmodified default behavior. Can be negative.- df
(
data.frame)
data set containing all analysis variables.- .ref_group
(
data.frameorvector)
the data corresponding to the reference group.- .in_ref_col
(
flag)TRUEwhen working with the reference level,FALSEotherwise.- .var
(
string)
single variable name that is passed byrtableswhen requested by a statistics function.- is_event
(
flag)TRUEif event,FALSEif time to event is censored.- strat
Value
coxph_pairwise()returns a layout object suitable for passing to further layouting functions, or tortables::build_table(). Adding this function to anrtablelayout will add formatted rows containing the statistics froms_coxph_pairwise()to the table layout.
-
s_coxph_pairwise()returns the statistics:pvalue: p-value to test the null hypothesis that hazard ratio = 1.hr: Hazard ratio.hr_ci: Confidence interval for hazard ratio.n_tot: Total number of observations.n_tot_events: Total number of events.
a_coxph_pairwise()returns the corresponding list with formattedrtables::CellValue().
Functions
coxph_pairwise(): Layout-creating function which can take statistics function arguments and additional format arguments. This function is a wrapper forrtables::analyze().s_coxph_pairwise(): Statistics function which analyzes HR, CIs of HR, and p-value of a Cox-PH model.a_coxph_pairwise(): Formatted analysis function which is used asafunincoxph_pairwise().
Examples
library(dplyr)
adtte_f <- tern_ex_adtte %>%
filter(PARAMCD == "OS") %>%
mutate(is_event = CNSR == 0)
df <- adtte_f %>% filter(ARMCD == "ARM A")
df_ref_group <- adtte_f %>% filter(ARMCD == "ARM B")
basic_table() %>%
split_cols_by(var = "ARMCD", ref_group = "ARM A") %>%
add_colcounts() %>%
coxph_pairwise(
vars = "AVAL",
is_event = "is_event",
var_labels = "Unstratified Analysis"
) %>%
build_table(df = adtte_f)
#> ARM A ARM B ARM C
#> (N=69) (N=73) (N=58)
#> ————————————————————————————————————————————————————————————
#> Unstratified Analysis
#> p-value (log-rank) 0.0905 0.0086
#> Hazard Ratio 1.41 1.81
#> 95% CI (0.95, 2.09) (1.16, 2.84)
basic_table() %>%
split_cols_by(var = "ARMCD", ref_group = "ARM A") %>%
add_colcounts() %>%
coxph_pairwise(
vars = "AVAL",
is_event = "is_event",
var_labels = "Stratified Analysis",
strata = "SEX",
control = control_coxph(pval_method = "wald")
) %>%
build_table(df = adtte_f)
#> ARM A ARM B ARM C
#> (N=69) (N=73) (N=58)
#> ——————————————————————————————————————————————————————————
#> Stratified Analysis
#> p-value (wald) 0.0784 0.0066
#> Hazard Ratio 1.44 1.89
#> 95% CI (0.96, 2.15) (1.19, 2.98)
