The analyze function estimate_proportion() creates a layout element to estimate the proportion of responders
within a studied population. The primary analysis variable, vars, indicates whether a response has occurred for
each record. See the method parameter for options of methods to use when constructing the confidence interval of
the proportion. Additionally, a stratification variable can be supplied via the strata element of the variables
argument.
Usage
estimate_proportion(
lyt,
vars,
conf_level = 0.95,
method = c("waldcc", "wald", "clopper-pearson", "wilson", "wilsonc", "strat_wilson",
"strat_wilsonc", "agresti-coull", "jeffreys"),
weights = NULL,
max_iterations = 50,
variables = list(strata = NULL),
long = FALSE,
na_str = default_na_str(),
nested = TRUE,
...,
show_labels = "hidden",
table_names = vars,
.stats = c("n_prop", "prop_ci"),
.stat_names = NULL,
.formats = NULL,
.labels = NULL,
.indent_mods = NULL
)
s_proportion(
df,
.var,
conf_level = 0.95,
method = c("waldcc", "wald", "clopper-pearson", "wilson", "wilsonc", "strat_wilson",
"strat_wilsonc", "agresti-coull", "jeffreys"),
weights = NULL,
max_iterations = 50,
variables = list(strata = NULL),
long = FALSE,
denom = c("n", "N_col", "N_row"),
...
)
a_proportion(
df,
...,
.stats = NULL,
.stat_names = NULL,
.formats = NULL,
.labels = NULL,
.indent_mods = NULL
)Arguments
- lyt
(
PreDataTableLayouts)
layout that analyses will be added to.- vars
(
character)
variable names for the primary analysis variable to be iterated over.- conf_level
(
proportion)
confidence level of the interval.- method
(
string)
the method used to construct the confidence interval for proportion of successful outcomes; one ofwaldcc,wald,clopper-pearson,wilson,wilsonc,strat_wilson,strat_wilsonc,agresti-coullorjeffreys.- weights
(
numericorNULL)
weights for each level of the strata. IfNULL, they are estimated using the iterative algorithm proposed in Yan and Su (2010) that minimizes the weighted squared length of the confidence interval.- max_iterations
(
count)
maximum number of iterations for the iterative procedure used to find estimates of optimal weights.- variables
(named
listofstring)
list of additional analysis variables.- long
(
flag)
whether a long description is required.- na_str
(
string)
string used to replace allNAor empty values in the output.- nested
(
flag)
whether this layout instruction should be applied within the existing layout structure _if possible (TRUE, the default) or as a new top-level element (FALSE). Ignored if it would nest a split. underneath analyses, which is not allowed.- ...
additional arguments for the lower level functions.
- show_labels
(
string)
label visibility: one of "default", "visible" and "hidden".- table_names
(
character)
this can be customized in the case that the samevarsare analyzed multiple times, to avoid warnings fromrtables.- .stats
-
(
character)
statistics to select for the table.Options are:
'n_prop', 'prop_ci' - .stat_names
(
character)
names of the statistics that are passed directly to name single statistics (.stats). This option is visible when producingrtables::as_result_df()withmake_ard = TRUE.- .formats
(named
characterorlist)
formats for the statistics. See Details inanalyze_varsfor more information on the"auto"setting.- .labels
(named
character)
labels for the statistics (without indent).- .indent_mods
(named
integer)
indent modifiers for the labels. Defaults to 0, which corresponds to the unmodified default behavior. Can be negative.- df
(
logicalordata.frame)
if only a logical vector is used, it indicates whether each subject is a responder or not.TRUErepresents a successful outcome. If adata.frameis provided, also thestratavariable names must be provided invariablesas a list element with the strata strings. In the case ofdata.frame, the logical vector of responses must be indicated as a variable name in.var.- .var
(
string)
single variable name that is passed byrtableswhen requested by a statistics function.- denom
-
(
string)
choice of denominator for proportion. Options are:n: number of values in this row and column intersection.N_row: total number of values in this row across columns.N_col: total number of values in this column across rows.
Value
estimate_proportion()returns a layout object suitable for passing to further layouting functions, or tortables::build_table(). Adding this function to anrtablelayout will add formatted rows containing the statistics froms_proportion()to the table layout.
s_proportion()returns statisticsn_prop(nand proportion) andprop_ci(proportion CI) for a given variable.
a_proportion()returns the corresponding list with formattedrtables::CellValue().
Functions
estimate_proportion(): Layout-creating function which can take statistics function arguments and additional format arguments. This function is a wrapper forrtables::analyze().s_proportion(): Statistics function estimating a proportion along with its confidence interval.a_proportion(): Formatted analysis function which is used asafuninestimate_proportion().
Examples
dta_test <- data.frame(
USUBJID = paste0("S", 1:12),
ARM = rep(LETTERS[1:3], each = 4),
AVAL = rep(LETTERS[1:3], each = 4)
) %>%
dplyr::mutate(is_rsp = AVAL == "A")
basic_table() %>%
split_cols_by("ARM") %>%
estimate_proportion(vars = "is_rsp") %>%
build_table(df = dta_test)
#> A B C
#> ——————————————————————————————————————————————————————————————————————————
#> Responders 4 (100.0%) 0 (0.0%) 0 (0.0%)
#> 95% CI (Wald, with correction) (87.5, 100.0) (0.0, 12.5) (0.0, 12.5)
# Case with only logical vector.
rsp_v <- c(1, 0, 1, 0, 1, 1, 0, 0)
s_proportion(rsp_v)
#> $n_prop
#> [1] 4.0 0.5
#> attr(,"label")
#> [1] "Responders"
#>
#> $prop_ci
#> [1] 9.102404 90.897596
#> attr(,"label")
#> [1] "95% CI (Wald, with correction)"
#>
# Example for Stratified Wilson CI
nex <- 100 # Number of example rows
dta <- data.frame(
"rsp" = sample(c(TRUE, FALSE), nex, TRUE),
"grp" = sample(c("A", "B"), nex, TRUE),
"f1" = sample(c("a1", "a2"), nex, TRUE),
"f2" = sample(c("x", "y", "z"), nex, TRUE),
stringsAsFactors = TRUE
)
s_proportion(
df = dta,
.var = "rsp",
variables = list(strata = c("f1", "f2")),
conf_level = 0.90,
method = "strat_wilson"
)
#> $n_prop
#> [1] 47.00 0.47
#> attr(,"label")
#> [1] "Responders"
#>
#> $prop_ci
#> lower upper
#> 38.15468 53.64792
#> attr(,"label")
#> [1] "90% CI (Stratified Wilson, without correction)"
#>
