| 1 |
#' Helper function to produce data frame with results |
|
| 2 |
#' of pool for a single visit |
|
| 3 |
#' |
|
| 4 |
#' `r lifecycle::badge("experimental")`
|
|
| 5 |
#' |
|
| 6 |
#' @param x (`pool`) is a list of pooled object from `rbmi` analysis results. This list includes |
|
| 7 |
#' analysis results, confidence level, hypothesis testing type. |
|
| 8 |
#' @return Data frame with results of pool for a single visit. |
|
| 9 |
#' @export |
|
| 10 |
#' |
|
| 11 |
#' @examples |
|
| 12 |
#' data("rbmi_test_data")
|
|
| 13 |
#' pool_obj <- rbmi_test_data |
|
| 14 |
#' |
|
| 15 |
#' h_tidy_pool(pool_obj$pars[1:3]) |
|
| 16 |
#' |
|
| 17 |
h_tidy_pool <- function(x) {
|
|
| 18 | 9x |
contr <- x[[grep("trt_", names(x))]]
|
| 19 | 9x |
ref <- x[[grep("lsm_ref_", names(x))]]
|
| 20 | 9x |
alt <- x[[grep("lsm_alt_", names(x))]]
|
| 21 | ||
| 22 | 9x |
df_ref <- data.frame( |
| 23 | 9x |
group = "ref", |
| 24 | 9x |
est = ref$est, |
| 25 | 9x |
se_est = ref$se, |
| 26 | 9x |
lower_cl_est = ref$ci[1], |
| 27 | 9x |
upper_cl_est = ref$ci[2], |
| 28 | 9x |
est_contr = NA_real_, |
| 29 | 9x |
se_contr = NA_real_, |
| 30 | 9x |
lower_cl_contr = NA_real_, |
| 31 | 9x |
upper_cl_contr = NA_real_, |
| 32 | 9x |
p_value = NA_real_, |
| 33 | 9x |
relative_reduc = NA_real_, |
| 34 | 9x |
stringsAsFactors = FALSE |
| 35 |
) |
|
| 36 | ||
| 37 | 9x |
df_alt <- data.frame( |
| 38 | 9x |
group = "alt", |
| 39 | 9x |
est = alt$est, |
| 40 | 9x |
se_est = alt$se, |
| 41 | 9x |
lower_cl_est = alt$ci[1], |
| 42 | 9x |
upper_cl_est = alt$ci[2], |
| 43 | 9x |
est_contr = contr$est, |
| 44 | 9x |
se_contr = contr$se, |
| 45 | 9x |
lower_cl_contr = contr$ci[1], |
| 46 | 9x |
upper_cl_contr = contr$ci[2], |
| 47 | 9x |
p_value = contr$pvalue, |
| 48 | 9x |
relative_reduc = contr$est / df_ref$est, |
| 49 | 9x |
stringsAsFactors = FALSE |
| 50 |
) |
|
| 51 | ||
| 52 | 9x |
result <- rbind( |
| 53 | 9x |
df_ref, |
| 54 | 9x |
df_alt |
| 55 |
) |
|
| 56 | ||
| 57 | 9x |
result |
| 58 |
} |
|
| 59 | ||
| 60 |
#' Helper method (for [`broom::tidy()`]) to prepare a data frame from an |
|
| 61 |
#' `pool` `rbmi` object containing the LS means and contrasts and multiple visits |
|
| 62 |
#' |
|
| 63 |
#' `r lifecycle::badge("experimental")`
|
|
| 64 |
#' |
|
| 65 |
#' @method tidy pool |
|
| 66 |
#' @param x (`pool`) is a list of pooled object from `rbmi` analysis results. This list includes |
|
| 67 |
#' analysis results, confidence level, hypothesis testing type. |
|
| 68 |
#' @param ... Additional arguments. Not used. Needed to match generic signature only. |
|
| 69 |
#' @export |
|
| 70 |
#' @return A dataframe |
|
| 71 |
#' |
|
| 72 |
tidy.pool <- function(x, ...) { # nolint
|
|
| 73 | ||
| 74 | 2x |
ls_raw <- x$pars |
| 75 | ||
| 76 | 2x |
visit_raw_names <- names(ls_raw)[grep("trt_", names(ls_raw))]
|
| 77 | 2x |
l_visit_names <- strsplit(visit_raw_names, "trt_") |
| 78 | 2x |
visit_names <- vapply(l_visit_names, `[`, 2, FUN.VALUE = character(1)) |
| 79 | ||
| 80 | 2x |
spl <- rep(visit_names, each = 3) |
| 81 | ||
| 82 | 2x |
ls_split <- split(ls_raw, spl) |
| 83 | ||
| 84 | 2x |
ls_df <- lapply(ls_split, h_tidy_pool) |
| 85 | ||
| 86 | 2x |
result <- do.call(rbind, unname(ls_df)) |
| 87 | ||
| 88 | 2x |
result$visit <- factor(rep(visit_names, each = 2)) |
| 89 | 2x |
result$group <- factor(result$group, levels = c("ref", "alt"))
|
| 90 | 2x |
result$conf_level <- x$conf.level |
| 91 | ||
| 92 | 2x |
result |
| 93 |
} |
|
| 94 | ||
| 95 |
#' Statistics function which is extracting estimates from a tidied LS means |
|
| 96 |
#' data frame. |
|
| 97 |
#' |
|
| 98 |
#' `r lifecycle::badge("experimental")`
|
|
| 99 |
#' |
|
| 100 |
#' @param df input dataframe |
|
| 101 |
#' @param .in_ref_col boolean variable, if reference column is specified |
|
| 102 |
#' @param show_relative "reduction" if (`control - treatment`, default) or "increase" |
|
| 103 |
#' (`treatment - control`) of relative change from baseline? |
|
| 104 |
#' @return A list of statistics extracted from a tidied LS means data frame. |
|
| 105 |
#' @export |
|
| 106 |
#' |
|
| 107 |
#' @examples |
|
| 108 |
#' library(rtables) |
|
| 109 |
#' library(dplyr) |
|
| 110 |
#' library(broom) |
|
| 111 |
#' |
|
| 112 |
#' data("rbmi_test_data")
|
|
| 113 |
#' pool_obj <- rbmi_test_data |
|
| 114 |
#' df <- tidy(pool_obj) |
|
| 115 |
#' |
|
| 116 |
#' s_rbmi_lsmeans(df[1, ], .in_ref_col = TRUE) |
|
| 117 |
#' |
|
| 118 |
#' s_rbmi_lsmeans(df[2, ], .in_ref_col = FALSE) |
|
| 119 |
#' |
|
| 120 |
s_rbmi_lsmeans <- function(df, .in_ref_col, show_relative = c("reduction", "increase")) {
|
|
| 121 | 3x |
checkmate::assert_flag(.in_ref_col) |
| 122 | 3x |
show_relative <- match.arg(show_relative) |
| 123 | 3x |
if_not_ref <- function(x) `if`(.in_ref_col, character(), x) |
| 124 | 3x |
list( |
| 125 | 3x |
adj_mean_se = c(df$est, df$se_est), |
| 126 | 3x |
adj_mean_ci = formatters::with_label( |
| 127 | 3x |
c(df$lower_cl_est, df$upper_cl_est), |
| 128 | 3x |
f_conf_level(df$conf_level) |
| 129 |
), |
|
| 130 | 3x |
diff_mean_se = if_not_ref(c(df$est_contr, df$se_contr)), |
| 131 | 3x |
diff_mean_ci = formatters::with_label( |
| 132 | 3x |
if_not_ref(c(df$lower_cl_contr, df$upper_cl_contr)), |
| 133 | 3x |
f_conf_level(df$conf_level) |
| 134 |
), |
|
| 135 | 3x |
change = switch(show_relative, |
| 136 | 3x |
reduction = formatters::with_label(if_not_ref(df$relative_reduc), "Relative Reduction (%)"), |
| 137 | 3x |
increase = formatters::with_label(if_not_ref(-df$relative_reduc), "Relative Increase (%)") |
| 138 |
), |
|
| 139 | 3x |
p_value = if_not_ref(df$p_value) |
| 140 |
) |
|
| 141 |
} |
|
| 142 | ||
| 143 |
#' Formatted Analysis function which can be further customized by calling |
|
| 144 |
#' [`rtables::make_afun()`] on it. It is used as `afun` in [`rtables::analyze()`]. |
|
| 145 |
#' |
|
| 146 |
#' `r lifecycle::badge("experimental")`
|
|
| 147 |
#' |
|
| 148 |
#' @param df input dataframe |
|
| 149 |
#' @param .in_ref_col boolean variable, if reference column is specified |
|
| 150 |
#' @param show_relative "reduction" if (`control - treatment`, default) or "increase" |
|
| 151 |
#' (`treatment - control`) of relative change from baseline? |
|
| 152 |
#' @return Formatted Analysis function |
|
| 153 |
#' @export |
|
| 154 |
#' |
|
| 155 |
a_rbmi_lsmeans <- make_afun( |
|
| 156 |
s_rbmi_lsmeans, |
|
| 157 |
.labels = c( |
|
| 158 |
adj_mean_se = "Adjusted Mean (SE)", |
|
| 159 |
diff_mean_se = "Difference in Adjusted Means (SE)", |
|
| 160 |
p_value = "p-value (RBMI)" |
|
| 161 |
), |
|
| 162 |
.formats = c( |
|
| 163 |
# n = "xx.", # note we don't have N from `rbmi` result |
|
| 164 |
adj_mean_se = sprintf_format("%.3f (%.3f)"),
|
|
| 165 |
adj_mean_ci = "(xx.xxx, xx.xxx)", |
|
| 166 |
diff_mean_se = sprintf_format("%.3f (%.3f)"),
|
|
| 167 |
diff_mean_ci = "(xx.xxx, xx.xxx)", |
|
| 168 |
change = "xx.x%", |
|
| 169 |
p_value = "x.xxxx | (<0.0001)" |
|
| 170 |
), |
|
| 171 |
.indent_mods = c( |
|
| 172 |
adj_mean_ci = 1L, |
|
| 173 |
diff_mean_ci = 1L, |
|
| 174 |
change = 1L, |
|
| 175 |
p_value = 1L |
|
| 176 |
), |
|
| 177 |
.null_ref_cells = FALSE |
|
| 178 |
) |
|
| 179 | ||
| 180 |
#' Analyze function for tabulating LS means estimates from tidied |
|
| 181 |
#' `rbmi` `pool` results. |
|
| 182 |
#' |
|
| 183 |
#' `r lifecycle::badge("experimental")`
|
|
| 184 |
#' |
|
| 185 |
#' @param lyt (`layout`)\cr input layout where analyses will be added to. |
|
| 186 |
#' @param table_names (`character`)\cr this can be customized in case that the same `vars` are analyzed multiple times, |
|
| 187 |
#' to avoid warnings from `rtables`. |
|
| 188 |
#' @param .stats (`character`)\cr statistics to select for the table. |
|
| 189 |
#' @param .formats (named `character` or `list`)\cr formats for the statistics. |
|
| 190 |
#' @param .indent_mods (named `integer`)\cr indent modifiers for the labels. |
|
| 191 |
#' @param .labels (named `character`)\cr labels for the statistics (without indent). |
|
| 192 |
#' @param ... additional argument. |
|
| 193 |
#' @return `rtables` layout for tabulating LS means estimates from tidied |
|
| 194 |
#' `rbmi` `pool` results. |
|
| 195 |
#' @export |
|
| 196 |
#' |
|
| 197 |
#' @examples |
|
| 198 |
#' library(rtables) |
|
| 199 |
#' library(dplyr) |
|
| 200 |
#' library(broom) |
|
| 201 |
#' |
|
| 202 |
#' data("rbmi_test_data")
|
|
| 203 |
#' pool_obj <- rbmi_test_data |
|
| 204 |
#' |
|
| 205 |
#' df <- tidy(pool_obj) |
|
| 206 |
#' |
|
| 207 |
#' basic_table() %>% |
|
| 208 |
#' split_cols_by("group", ref_group = levels(df$group)[1]) %>%
|
|
| 209 |
#' split_rows_by("visit", split_label = "Visit", label_pos = "topleft") %>%
|
|
| 210 |
#' summarize_rbmi() %>% |
|
| 211 |
#' build_table(df) |
|
| 212 |
#' |
|
| 213 |
summarize_rbmi <- function(lyt, |
|
| 214 |
..., |
|
| 215 |
table_names = "rbmi_summary", |
|
| 216 |
.stats = NULL, |
|
| 217 |
.formats = NULL, |
|
| 218 |
.indent_mods = NULL, |
|
| 219 |
.labels = NULL) {
|
|
| 220 | 1x |
afun <- make_afun( |
| 221 | 1x |
a_rbmi_lsmeans, |
| 222 | 1x |
.stats = .stats, |
| 223 | 1x |
.formats = .formats, |
| 224 | 1x |
.indent_mods = .indent_mods, |
| 225 | 1x |
.labels = .labels |
| 226 |
) |
|
| 227 | 1x |
analyze( |
| 228 | 1x |
lyt = lyt, |
| 229 | 1x |
vars = "est", |
| 230 | 1x |
afun = afun, |
| 231 | 1x |
table_names = table_names, |
| 232 | 1x |
extra_args = list(...) |
| 233 |
) |
|
| 234 |
} |