Extract Least Square Means from a GEE Model
Usage
lsmeans(
object,
conf_level = 0.95,
weights = "proportional",
specs = object$vars$arm,
...
)
# S3 method for class 'tern_gee_logistic'
lsmeans(
object,
conf_level = 0.95,
weights = "proportional",
specs = object$vars$arm,
...
)Arguments
- object
(
tern_gee)
result offit_gee().- conf_level
(
proportion)
confidence level- weights
(
string)
type of weights to be used for the least square means, seeemmeans::emmeans()for details.- specs
(
stringorformula) specifications passed toemmeans::emmeans()- ...
additional arguments for methods
Value
A data.frame with least-square means and contrasts. Additional
classes allow to dispatch downstream methods correctly, too.
Examples
df <- fev_data
df$AVAL <- rbinom(n = nrow(df), size = 1, prob = 0.5)
fit <- fit_gee(vars = vars_gee(arm = "ARMCD"), data = df)
lsmeans(fit)
#> ARMCD prop_est prop_est_se prop_lower_cl prop_upper_cl n or_est
#> 1 PBO 0.5202839 0.02106086 0.4788982 0.5613931 420 NA
#> 2 TRT 0.5414730 0.02440801 0.4933255 0.5888583 380 1.088819
#> or_lower_cl or_upper_cl log_or_est log_or_lower_cl log_or_upper_cl conf_level
#> 1 NA NA NA NA NA 0.95
#> 2 0.8443247 1.404113 0.08509393 -0.1692181 0.339406 0.95
lsmeans(fit, conf_level = 0.90, weights = "equal")
#> ARMCD prop_est prop_est_se prop_lower_cl prop_upper_cl n or_est
#> 1 PBO 0.5202839 0.02106086 0.4788982 0.5613931 420 NA
#> 2 TRT 0.5414730 0.02440801 0.4933255 0.5888583 380 1.088819
#> or_lower_cl or_upper_cl log_or_est log_or_lower_cl log_or_upper_cl conf_level
#> 1 NA NA NA NA NA 0.9
#> 2 0.8796287 1.347759 0.08509393 -0.1282554 0.2984433 0.9