Extract Least Square Means from a GEE Model
Usage
lsmeans(
object,
conf_level = 0.95,
weights = "proportional",
specs = object$vars$arm,
...
)
# S3 method for class 'tern_gee_logistic'
lsmeans(
object,
conf_level = 0.95,
weights = "proportional",
specs = object$vars$arm,
...
)
Arguments
- object
(
tern_gee
)
result offit_gee()
.- conf_level
(
proportion
)
confidence level- weights
(
string
)
type of weights to be used for the least square means, seeemmeans::emmeans()
for details.- specs
(
string
orformula
) specifications passed toemmeans::emmeans()
- ...
additional arguments for methods
Value
A data.frame
with least-square means and contrasts. Additional
classes allow to dispatch downstream methods correctly, too.
Examples
df <- fev_data
df$AVAL <- rbinom(n = nrow(df), size = 1, prob = 0.5)
fit <- fit_gee(vars = vars_gee(arm = "ARMCD"), data = df)
lsmeans(fit)
#> ARMCD prop_est prop_est_se prop_lower_cl prop_upper_cl n or_est
#> 1 PBO 0.5349901 0.02202202 0.4916075 0.5778497 420 NA
#> 2 TRT 0.5254463 0.02338787 0.4794517 0.5710132 380 0.9624085
#> or_lower_cl or_upper_cl log_or_est log_or_lower_cl log_or_upper_cl
#> 1 NA NA NA NA NA
#> 2 0.7471582 1.239671 -0.03831627 -0.2914784 0.2148458
#> conf_level
#> 1 0.95
#> 2 0.95
lsmeans(fit, conf_level = 0.90, weights = "equal")
#> ARMCD prop_est prop_est_se prop_lower_cl prop_upper_cl n or_est
#> 1 PBO 0.5349901 0.02202202 0.4916075 0.5778497 420 NA
#> 2 TRT 0.5254463 0.02338787 0.4794517 0.5710132 380 0.9624085
#> or_lower_cl or_upper_cl log_or_est log_or_lower_cl log_or_upper_cl
#> 1 NA NA NA NA NA
#> 2 0.7782551 1.190137 -0.03831627 -0.2507009 0.1740684
#> conf_level
#> 1 0.9
#> 2 0.9