The teal_card S3 class provides functionality to store, manage, edit, and adjust report contents.
It enables users to create, manipulate, and serialize report-related data efficiently.
The teal_card() function serves two purposes:
When called with a
teal_reportobject, it acts as a getter and returns the card slot.When called with other arguments, it creates a new
teal_cardobject from those arguments.
This function ensures that input is converted to a teal_card object. It accepts various input types and converts them appropriately.
Usage
teal_card(...)
teal_card(x) <- value
as.teal_card(x)
# S3 method for class 'teal_card'
c(...)
# S3 method for class 'teal_card'
x[i]Details
The teal_card class supports c() and x[i] methods for combining and subsetting elements.
However, these methods only function correctly when the first element is a teal_card.
See also
code_chunk(), render(), toHTML()
Examples
# create an empty card
report <- teal_card()
# Create a card with content
report <- teal_card(
"## Headline",
"This is `iris` table",
code_chunk("print(iris)", lang = "R"),
iris
)
# Add elements to the report
report <- c(
report,
list("## mtcars Table"),
code_chunk("print(mtcars)", lang = "R"),
mtcars
)
# Subset the report to keep only the first two elements
report[1:2]
#> $dd798bfa
#> [1] "## Headline"
#>
#> $`5138490e`
#> [1] "This is `iris` table"
#>
#> attr(,"class")
#> [1] "teal_card"
#> attr(,"metadata")
#> list()
# Replace element
report[[1]] <- "## Iris Table"
# Append element
report <- append(report, teal_card("# Awesome Report"), after = 0)
tools::toHTML(report)
Awesome Report
Iris Table
This is iris table
print(iris)
Sepal.Length
Sepal.Width
Petal.Length
Petal.Width
Species
1
5.1
3.5
1.4
0.2
setosa
2
4.9
3
1.4
0.2
setosa
3
4.7
3.2
1.3
0.2
setosa
4
4.6
3.1
1.5
0.2
setosa
5
5
3.6
1.4
0.2
setosa
6
5.4
3.9
1.7
0.4
setosa
7
4.6
3.4
1.4
0.3
setosa
8
5
3.4
1.5
0.2
setosa
9
4.4
2.9
1.4
0.2
setosa
10
4.9
3.1
1.5
0.1
setosa
11
5.4
3.7
1.5
0.2
setosa
12
4.8
3.4
1.6
0.2
setosa
13
4.8
3
1.4
0.1
setosa
14
4.3
3
1.1
0.1
setosa
15
5.8
4
1.2
0.2
setosa
16
5.7
4.4
1.5
0.4
setosa
17
5.4
3.9
1.3
0.4
setosa
18
5.1
3.5
1.4
0.3
setosa
19
5.7
3.8
1.7
0.3
setosa
20
5.1
3.8
1.5
0.3
setosa
21
5.4
3.4
1.7
0.2
setosa
22
5.1
3.7
1.5
0.4
setosa
23
4.6
3.6
1
0.2
setosa
24
5.1
3.3
1.7
0.5
setosa
25
4.8
3.4
1.9
0.2
setosa
26
5
3
1.6
0.2
setosa
27
5
3.4
1.6
0.4
setosa
28
5.2
3.5
1.5
0.2
setosa
29
5.2
3.4
1.4
0.2
setosa
30
4.7
3.2
1.6
0.2
setosa
31
4.8
3.1
1.6
0.2
setosa
32
5.4
3.4
1.5
0.4
setosa
33
5.2
4.1
1.5
0.1
setosa
34
5.5
4.2
1.4
0.2
setosa
35
4.9
3.1
1.5
0.2
setosa
36
5
3.2
1.2
0.2
setosa
37
5.5
3.5
1.3
0.2
setosa
38
4.9
3.6
1.4
0.1
setosa
39
4.4
3
1.3
0.2
setosa
40
5.1
3.4
1.5
0.2
setosa
41
5
3.5
1.3
0.3
setosa
42
4.5
2.3
1.3
0.3
setosa
43
4.4
3.2
1.3
0.2
setosa
44
5
3.5
1.6
0.6
setosa
45
5.1
3.8
1.9
0.4
setosa
46
4.8
3
1.4
0.3
setosa
47
5.1
3.8
1.6
0.2
setosa
48
4.6
3.2
1.4
0.2
setosa
49
5.3
3.7
1.5
0.2
setosa
50
5
3.3
1.4
0.2
setosa
51
7
3.2
4.7
1.4
versicolor
52
6.4
3.2
4.5
1.5
versicolor
53
6.9
3.1
4.9
1.5
versicolor
54
5.5
2.3
4
1.3
versicolor
55
6.5
2.8
4.6
1.5
versicolor
56
5.7
2.8
4.5
1.3
versicolor
57
6.3
3.3
4.7
1.6
versicolor
58
4.9
2.4
3.3
1
versicolor
59
6.6
2.9
4.6
1.3
versicolor
60
5.2
2.7
3.9
1.4
versicolor
61
5
2
3.5
1
versicolor
62
5.9
3
4.2
1.5
versicolor
63
6
2.2
4
1
versicolor
64
6.1
2.9
4.7
1.4
versicolor
65
5.6
2.9
3.6
1.3
versicolor
66
6.7
3.1
4.4
1.4
versicolor
67
5.6
3
4.5
1.5
versicolor
68
5.8
2.7
4.1
1
versicolor
69
6.2
2.2
4.5
1.5
versicolor
70
5.6
2.5
3.9
1.1
versicolor
71
5.9
3.2
4.8
1.8
versicolor
72
6.1
2.8
4
1.3
versicolor
73
6.3
2.5
4.9
1.5
versicolor
74
6.1
2.8
4.7
1.2
versicolor
75
6.4
2.9
4.3
1.3
versicolor
76
6.6
3
4.4
1.4
versicolor
77
6.8
2.8
4.8
1.4
versicolor
78
6.7
3
5
1.7
versicolor
79
6
2.9
4.5
1.5
versicolor
80
5.7
2.6
3.5
1
versicolor
81
5.5
2.4
3.8
1.1
versicolor
82
5.5
2.4
3.7
1
versicolor
83
5.8
2.7
3.9
1.2
versicolor
84
6
2.7
5.1
1.6
versicolor
85
5.4
3
4.5
1.5
versicolor
86
6
3.4
4.5
1.6
versicolor
87
6.7
3.1
4.7
1.5
versicolor
88
6.3
2.3
4.4
1.3
versicolor
89
5.6
3
4.1
1.3
versicolor
90
5.5
2.5
4
1.3
versicolor
91
5.5
2.6
4.4
1.2
versicolor
92
6.1
3
4.6
1.4
versicolor
93
5.8
2.6
4
1.2
versicolor
94
5
2.3
3.3
1
versicolor
95
5.6
2.7
4.2
1.3
versicolor
96
5.7
3
4.2
1.2
versicolor
97
5.7
2.9
4.2
1.3
versicolor
98
6.2
2.9
4.3
1.3
versicolor
99
5.1
2.5
3
1.1
versicolor
100
5.7
2.8
4.1
1.3
versicolor
101
6.3
3.3
6
2.5
virginica
102
5.8
2.7
5.1
1.9
virginica
103
7.1
3
5.9
2.1
virginica
104
6.3
2.9
5.6
1.8
virginica
105
6.5
3
5.8
2.2
virginica
106
7.6
3
6.6
2.1
virginica
107
4.9
2.5
4.5
1.7
virginica
108
7.3
2.9
6.3
1.8
virginica
109
6.7
2.5
5.8
1.8
virginica
110
7.2
3.6
6.1
2.5
virginica
111
6.5
3.2
5.1
2
virginica
112
6.4
2.7
5.3
1.9
virginica
113
6.8
3
5.5
2.1
virginica
114
5.7
2.5
5
2
virginica
115
5.8
2.8
5.1
2.4
virginica
116
6.4
3.2
5.3
2.3
virginica
117
6.5
3
5.5
1.8
virginica
118
7.7
3.8
6.7
2.2
virginica
119
7.7
2.6
6.9
2.3
virginica
120
6
2.2
5
1.5
virginica
121
6.9
3.2
5.7
2.3
virginica
122
5.6
2.8
4.9
2
virginica
123
7.7
2.8
6.7
2
virginica
124
6.3
2.7
4.9
1.8
virginica
125
6.7
3.3
5.7
2.1
virginica
126
7.2
3.2
6
1.8
virginica
127
6.2
2.8
4.8
1.8
virginica
128
6.1
3
4.9
1.8
virginica
129
6.4
2.8
5.6
2.1
virginica
130
7.2
3
5.8
1.6
virginica
131
7.4
2.8
6.1
1.9
virginica
132
7.9
3.8
6.4
2
virginica
133
6.4
2.8
5.6
2.2
virginica
134
6.3
2.8
5.1
1.5
virginica
135
6.1
2.6
5.6
1.4
virginica
136
7.7
3
6.1
2.3
virginica
137
6.3
3.4
5.6
2.4
virginica
138
6.4
3.1
5.5
1.8
virginica
139
6
3
4.8
1.8
virginica
140
6.9
3.1
5.4
2.1
virginica
141
6.7
3.1
5.6
2.4
virginica
142
6.9
3.1
5.1
2.3
virginica
143
5.8
2.7
5.1
1.9
virginica
144
6.8
3.2
5.9
2.3
virginica
145
6.7
3.3
5.7
2.5
virginica
146
6.7
3
5.2
2.3
virginica
147
6.3
2.5
5
1.9
virginica
148
6.5
3
5.2
2
virginica
149
6.2
3.4
5.4
2.3
virginica
150
5.9
3
5.1
1.8
virginica
mtcars Table
print(mtcars)
mpg
cyl
disp
hp
drat
wt
qsec
vs
am
gear
carb
Mazda RX4
21
6
160
110
3.9
2.62
16.46
0
1
4
4
Mazda RX4 Wag
21
6
160
110
3.9
2.875
17.02
0
1
4
4
Datsun 710
22.8
4
108
93
3.85
2.32
18.61
1
1
4
1
Hornet 4 Drive
21.4
6
258
110
3.08
3.215
19.44
1
0
3
1
Hornet Sportabout
18.7
8
360
175
3.15
3.44
17.02
0
0
3
2
Valiant
18.1
6
225
105
2.76
3.46
20.22
1
0
3
1
Duster 360
14.3
8
360
245
3.21
3.57
15.84
0
0
3
4
Merc 240D
24.4
4
146.7
62
3.69
3.19
20
1
0
4
2
Merc 230
22.8
4
140.8
95
3.92
3.15
22.9
1
0
4
2
Merc 280
19.2
6
167.6
123
3.92
3.44
18.3
1
0
4
4
Merc 280C
17.8
6
167.6
123
3.92
3.44
18.9
1
0
4
4
Merc 450SE
16.4
8
275.8
180
3.07
4.07
17.4
0
0
3
3
Merc 450SL
17.3
8
275.8
180
3.07
3.73
17.6
0
0
3
3
Merc 450SLC
15.2
8
275.8
180
3.07
3.78
18
0
0
3
3
Cadillac Fleetwood
10.4
8
472
205
2.93
5.25
17.98
0
0
3
4
Lincoln Continental
10.4
8
460
215
3
5.424
17.82
0
0
3
4
Chrysler Imperial
14.7
8
440
230
3.23
5.345
17.42
0
0
3
4
Fiat 128
32.4
4
78.7
66
4.08
2.2
19.47
1
1
4
1
Honda Civic
30.4
4
75.7
52
4.93
1.615
18.52
1
1
4
2
Toyota Corolla
33.9
4
71.1
65
4.22
1.835
19.9
1
1
4
1
Toyota Corona
21.5
4
120.1
97
3.7
2.465
20.01
1
0
3
1
Dodge Challenger
15.5
8
318
150
2.76
3.52
16.87
0
0
3
2
AMC Javelin
15.2
8
304
150
3.15
3.435
17.3
0
0
3
2
Camaro Z28
13.3
8
350
245
3.73
3.84
15.41
0
0
3
4
Pontiac Firebird
19.2
8
400
175
3.08
3.845
17.05
0
0
3
2
Fiat X1-9
27.3
4
79
66
4.08
1.935
18.9
1
1
4
1
Porsche 914-2
26
4
120.3
91
4.43
2.14
16.7
0
1
5
2
Lotus Europa
30.4
4
95.1
113
3.77
1.513
16.9
1
1
5
2
Ford Pantera L
15.8
8
351
264
4.22
3.17
14.5
0
1
5
4
Ferrari Dino
19.7
6
145
175
3.62
2.77
15.5
0
1
5
6
Maserati Bora
15
8
301
335
3.54
3.57
14.6
0
1
5
8
Volvo 142E
21.4
4
121
109
4.11
2.78
18.6
1
1
4
2
if (interactive()) {
render(report, output_format = rmarkdown::pdf_document())
}