Usage
sampleVarSpecServer(
id,
experiment_name,
original_data,
transformed_data = original_data,
assign_lists = reactiveValues(),
num_levels = NULL,
categorical_only = !is.null(num_levels),
explicit_na = FALSE,
label_modal_title = "Please click to group the original factor levels"
)
Arguments
- id
(
string
) the shiny module id.- experiment_name
(reactive
string
)
name of the input experiment.- original_data
(reactive
SummarizedExperiment
)
input experiment where the sample variables extracted viaSummarizedExperiment::colData()
should be eligible for selection.- transformed_data
(reactive
SummarizedExperiment
)
used when multiple sample variables can be selected in the app. In that case, pass here the pre-transformed data.- assign_lists
(
reactivevalues
)
object to share factor level groupings across multiple sample variables.- num_levels
(
count
orNULL
)
required number of levels after combining original levels. IfNULL
then all numbers of levels are allowed.- categorical_only
(
flag
)
whether only categorical variables should be selected from.- explicit_na
(
flag
)
whether thecolData
oforiginal_data
will be transformed with hermes::h_df_factors_with_explicit_na before further processing. That means also thatNA
will be made an explicit factor level and counted fornum_levels
.- label_modal_title
(
string
)
title for the dialog that asks for the text input.
Value
Reactive SummarizedExperiment::SummarizedExperiment
which can be used as
input for the relevant hermes
functions.
Note
Only atomic columns (e.g. not DataFrame
columns) of the colData
which are not completely missing (NA
) will be shown for selection.
If num_levels
is specified then only factor columns will be available.
See also
sampleVarSpecInput()
for the module UI.
Examples
ui <- function(id,
datasets) {
ns <- NS(id)
mae <- datasets$get_data("MAE", filtered = FALSE)
experiment_name_choices <- names(mae)
teal.widgets::standard_layout(
encoding = div(
selectInput(ns("experiment_name"), "Select experiment", experiment_name_choices),
sampleVarSpecInput(ns("facet_var"), "Select faceting variable")
),
output = plotOutput(ns("plot"))
)
}
server <- function(id,
datasets) {
moduleServer(id, function(input, output, session) {
experiment_data <- reactive({
req(input$experiment_name)
mae <- datasets$get_data("MAE", filtered = TRUE)
object <- mae[[input$experiment_name]]
SummarizedExperiment::colData(object) <- hermes::df_cols_to_factor(SummarizedExperiment::colData(object))
object
})
facet_var_spec <- sampleVarSpecServer(
"facet_var",
experiment_name = reactive({
input$experiment_name
}),
original_data = experiment_data
)
output$plot <- renderPlot({
experiment_data_final <- facet_var_spec$experiment_data()
facet_var <- facet_var_spec$sample_var()
hermes::draw_boxplot(
experiment_data_final,
assay_name = "counts",
genes = hermes::gene_spec(hermes::genes(experiment_data_final)[1]),
facet_var = facet_var
)
})
})
}
my_app <- function() {
mae <- hermes::multi_assay_experiment
mae_data <- dataset("MAE", mae)
data <- teal_data(mae_data)
app <- init(
data = data,
modules = modules(
module(
label = "sampleVarSpec example",
server = server,
ui = ui,
filters = "all"
)
)
)
shinyApp(app$ui, app$server)
}
if (interactive()) {
my_app()
}