Module to analyze and identify outliers using different methods such as IQR, Z-score, and Percentiles, and offers visualizations including box plots, density plots, and cumulative distribution plots to help interpret the outliers.
Usage
tm_outliers(
label = "Outliers Module",
outlier_var,
categorical_var = NULL,
ggtheme = c("gray", "bw", "linedraw", "light", "dark", "minimal", "classic", "void"),
ggplot2_args = teal.widgets::ggplot2_args(),
plot_height = c(600, 200, 2000),
plot_width = NULL,
pre_output = NULL,
post_output = NULL,
transformators = list(),
decorators = list()
)Arguments
- label
(
character(1)) Label shown in the navigation item for the module or module group. Formodules()defaults to"root". SeeDetails.- outlier_var
(
data_extract_specorlistof multipledata_extract_spec) Specifies variable(s) to be analyzed for outliers.- categorical_var
(
data_extract_specorlistof multipledata_extract_spec) optional, specifies the categorical variable(s) to split the selected outlier variables on.- ggtheme
(
character) optional,ggplot2theme to be used by default. Defaults to"gray".- ggplot2_args
-
(
ggplot2_args) optional, object created byteal.widgets::ggplot2_args()with settings for all the plots or named list ofggplot2_argsobjects for plot-specific settings. The argument is merged with options variableteal.ggplot2_argsand default module setup.List names should match the following:
c("default", "Boxplot", "Density Plot", "Cumulative Distribution Plot").For more details see the vignette:
vignette("custom-ggplot2-arguments", package = "teal.widgets"). - plot_height
(
numeric) optional, specifies the plot height as a three-element vector ofvalue,min, andmaxintended for use with a slider UI element.- plot_width
(
numeric) optional, specifies the plot width as a three-element vector ofvalue,min, andmaxfor a slider encoding the plot width.- pre_output
(
shiny.tag) optional, text or UI element to be displayed before the module's output, providing context or a title. with text placed before the output to put the output into context. For example a title.- post_output
(
shiny.tag) optional, text or UI element to be displayed after the module's output, adding context or further instructions. Elements likeshiny::helpText()are useful.- transformators
(
listofteal_transform_module) that will be applied to transform module's data input. To learn more checkvignette("transform-input-data", package = "teal").- decorators
-
(named
listof lists ofteal_transform_module) optional, decorator for tables or plots included in the module output reported. The decorators are applied to the respective output objects.See section "Decorating Module" below for more details.
Decorating Module
This module generates the following objects, which can be modified in place using decorators:
box_plot(ggplot)density_plot(ggplot)cumulative_plot(ggplot)
A Decorator is applied to the specific output using a named list of teal_transform_module objects.
The name of this list corresponds to the name of the output to which the decorator is applied.
See code snippet below:
tm_outliers(
..., # arguments for module
decorators = list(
box_plot = teal_transform_module(...), # applied only to `box_plot` output
density_plot = teal_transform_module(...), # applied only to `density_plot` output
cumulative_plot = teal_transform_module(...) # applied only to `cumulative_plot` output
)
)
For additional details and examples of decorators, refer to the vignette
vignette("decorate-module-output", package = "teal.modules.general").
To learn more please refer to the vignette
vignette("transform-module-output", package = "teal") or the teal::teal_transform_module() documentation.
Examples
# general data example
data <- teal_data()
data <- within(data, {
CO2 <- CO2
CO2[["primary_key"]] <- seq_len(nrow(CO2))
})
join_keys(data) <- join_keys(join_key("CO2", "CO2", "primary_key"))
vars <- choices_selected(variable_choices(data[["CO2"]], c("Plant", "Type", "Treatment")))
app <- init(
data = data,
modules = modules(
tm_outliers(
outlier_var = list(
data_extract_spec(
dataname = "CO2",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["CO2"]], c("conc", "uptake")),
selected = "uptake",
multiple = FALSE,
fixed = FALSE
)
)
),
categorical_var = list(
data_extract_spec(
dataname = "CO2",
filter = filter_spec(
vars = vars,
choices = value_choices(data[["CO2"]], vars$selected),
selected = value_choices(data[["CO2"]], vars$selected),
multiple = TRUE
)
)
)
)
)
)
#> Initializing tm_outliers
if (interactive()) {
shinyApp(app$ui, app$server)
}
# CDISC data example
data <- teal_data()
data <- within(data, {
ADSL <- teal.data::rADSL
})
join_keys(data) <- default_cdisc_join_keys[names(data)]
fact_vars_adsl <- names(Filter(isTRUE, sapply(data[["ADSL"]], is.factor)))
vars <- choices_selected(variable_choices(data[["ADSL"]], fact_vars_adsl))
app <- init(
data = data,
modules = modules(
tm_outliers(
outlier_var = list(
data_extract_spec(
dataname = "ADSL",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["ADSL"]], c("AGE", "BMRKR1")),
selected = "AGE",
multiple = FALSE,
fixed = FALSE
)
)
),
categorical_var = list(
data_extract_spec(
dataname = "ADSL",
filter = filter_spec(
vars = vars,
choices = value_choices(data[["ADSL"]], vars$selected),
selected = value_choices(data[["ADSL"]], vars$selected),
multiple = TRUE
)
)
)
)
)
)
#> Initializing tm_outliers
if (interactive()) {
shinyApp(app$ui, app$server)
}