Module to analyze and identify outliers using different methods such as IQR, Z-score, and Percentiles, and offers visualizations including box plots, density plots, and cumulative distribution plots to help interpret the outliers.
Usage
tm_outliers(
label = "Outliers Module",
outlier_var,
categorical_var = NULL,
ggtheme = c("gray", "bw", "linedraw", "light", "dark", "minimal", "classic", "void"),
ggplot2_args = teal.widgets::ggplot2_args(),
plot_height = c(600, 200, 2000),
plot_width = NULL,
pre_output = NULL,
post_output = NULL
)Arguments
- label
(
character(1)) Label shown in the navigation item for the module or module group. Formodules()defaults to"root". SeeDetails.- outlier_var
(
data_extract_specorlistof multipledata_extract_spec) Specifies variable(s) to be analyzed for outliers.- categorical_var
(
data_extract_specorlistof multipledata_extract_spec) optional, specifies the categorical variable(s) to split the selected outlier variables on.- ggtheme
(
character) optional,ggplot2theme to be used by default. Defaults to"gray".- ggplot2_args
-
(
ggplot2_args) optional, object created byteal.widgets::ggplot2_args()with settings for all the plots or named list ofggplot2_argsobjects for plot-specific settings. The argument is merged with options variableteal.ggplot2_argsand default module setup.List names should match the following:
c("default", "Boxplot","Density Plot","Cumulative Distribution Plot").For more details see the vignette:
vignette("custom-ggplot2-arguments", package = "teal.widgets"). - plot_height
(
numeric) optional, specifies the plot height as a three-element vector ofvalue,min, andmaxintended for use with a slider UI element.- plot_width
(
numeric) optional, specifies the plot width as a three-element vector ofvalue,min, andmaxfor a slider encoding the plot width.- pre_output
(
shiny.tag) optional, text or UI element to be displayed before the module's output, providing context or a title. with text placed before the output to put the output into context. For example a title.- post_output
(
shiny.tag) optional, text or UI element to be displayed after the module's output, adding context or further instructions. Elements likeshiny::helpText()are useful.
Examples
library(teal.widgets)
# general data example
data <- teal_data()
data <- within(data, {
CO2 <- CO2
CO2[["primary_key"]] <- seq_len(nrow(CO2))
})
datanames(data) <- "CO2"
join_keys(data) <- join_keys(join_key("CO2", "CO2", "primary_key"))
vars <- choices_selected(variable_choices(data[["CO2"]], c("Plant", "Type", "Treatment")))
app <- init(
data = data,
modules = modules(
tm_outliers(
outlier_var = list(
data_extract_spec(
dataname = "CO2",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["CO2"]], c("conc", "uptake")),
selected = "uptake",
multiple = FALSE,
fixed = FALSE
)
)
),
categorical_var = list(
data_extract_spec(
dataname = "CO2",
filter = filter_spec(
vars = vars,
choices = value_choices(data[["CO2"]], vars$selected),
selected = value_choices(data[["CO2"]], vars$selected),
multiple = TRUE
)
)
),
ggplot2_args = list(
ggplot2_args(
labs = list(subtitle = "Plot generated by Outliers Module")
)
)
)
)
)
#> [INFO] 2024-03-05 18:46:11.4716 pid:1279 token:[] teal.modules.general Initializing tm_outliers
if (interactive()) {
shinyApp(app$ui, app$server)
}
# CDISC data example
data <- teal_data()
data <- within(data, {
ADSL <- rADSL
})
datanames(data) <- "ADSL"
join_keys(data) <- default_cdisc_join_keys[datanames(data)]
fact_vars_adsl <- names(Filter(isTRUE, sapply(data[["ADSL"]], is.factor)))
vars <- choices_selected(variable_choices(data[["ADSL"]], fact_vars_adsl))
app <- init(
data = data,
modules = modules(
tm_outliers(
outlier_var = list(
data_extract_spec(
dataname = "ADSL",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["ADSL"]], c("AGE", "BMRKR1")),
selected = "AGE",
multiple = FALSE,
fixed = FALSE
)
)
),
categorical_var = list(
data_extract_spec(
dataname = "ADSL",
filter = filter_spec(
vars = vars,
choices = value_choices(data[["ADSL"]], vars$selected),
selected = value_choices(data[["ADSL"]], vars$selected),
multiple = TRUE
)
)
),
ggplot2_args = list(
ggplot2_args(
labs = list(subtitle = "Plot generated by Outliers Module")
)
)
)
)
)
#> [INFO] 2024-03-05 18:46:11.5998 pid:1279 token:[] teal.modules.general Initializing tm_outliers
if (interactive()) {
shinyApp(app$ui, app$server)
}