Module to analyze and identify outliers using different methods such as IQR, Z-score, and Percentiles, and offers visualizations including box plots, density plots, and cumulative distribution plots to help interpret the outliers.
Usage
tm_outliers(
label = "Outliers Module",
outlier_var,
categorical_var = NULL,
ggtheme = c("gray", "bw", "linedraw", "light", "dark", "minimal", "classic", "void"),
ggplot2_args = teal.widgets::ggplot2_args(),
plot_height = c(600, 200, 2000),
plot_width = NULL,
pre_output = NULL,
post_output = NULL,
decorators = NULL
)
Arguments
- label
(
character(1)
) Label shown in the navigation item for the module or module group. Formodules()
defaults to"root"
. SeeDetails
.- outlier_var
(
data_extract_spec
orlist
of multipledata_extract_spec
) Specifies variable(s) to be analyzed for outliers.- categorical_var
(
data_extract_spec
orlist
of multipledata_extract_spec
) optional, specifies the categorical variable(s) to split the selected outlier variables on.- ggtheme
(
character
) optional,ggplot2
theme to be used by default. Defaults to"gray"
.- ggplot2_args
-
(
ggplot2_args
) optional, object created byteal.widgets::ggplot2_args()
with settings for all the plots or named list ofggplot2_args
objects for plot-specific settings. The argument is merged with options variableteal.ggplot2_args
and default module setup.List names should match the following:
c("default", "Boxplot", "Density Plot", "Cumulative Distribution Plot")
.For more details see the vignette:
vignette("custom-ggplot2-arguments", package = "teal.widgets")
. - plot_height
(
numeric
) optional, specifies the plot height as a three-element vector ofvalue
,min
, andmax
intended for use with a slider UI element.- plot_width
(
numeric
) optional, specifies the plot width as a three-element vector ofvalue
,min
, andmax
for a slider encoding the plot width.- pre_output
(
shiny.tag
) optional, text or UI element to be displayed before the module's output, providing context or a title. with text placed before the output to put the output into context. For example a title.- post_output
(
shiny.tag
) optional, text or UI element to be displayed after the module's output, adding context or further instructions. Elements likeshiny::helpText()
are useful.- decorators
-
(
list
ofteal_transform_module
, namedlist
ofteal_transform_module
orNULL
) optional, if notNULL
, decorator for tables or plots included in the module. When a named list ofteal_transform_module
, the decorators are applied to the respective output objects.Otherwise, the decorators are applied to all objects, which is equivalent as using the name
default
.See section "Decorating
tm_outliers
" below for more details.
Decorating tm_outliers
This module generates the following objects, which can be modified in place using decorators:
box_plot
(ggplot2
)density_plot
(ggplot2
)cumulative_plot
(ggplot2
)table
(DT::datatable()
)
Decorators can be applied to all outputs or only to specific objects using a
named list of teal_transform_module
objects.
The "default"
name is reserved for decorators that are applied to all outputs.
See code snippet below:
tm_outliers(
..., # arguments for module
decorators = list(
default = list(teal_transform_module(...)), # applied to all outputs
box_plot = list(teal_transform_module(...)), # applied only to `box_plot` output
density_plot = list(teal_transform_module(...)) # applied only to `density_plot` output
cumulative_plot = list(teal_transform_module(...)) # applied only to `cumulative_plot` output
table = list(teal_transform_module(...)) # applied only to `table` output
)
)
For additional details and examples of decorators, refer to the vignette
vignette("decorate-modules-output", package = "teal")
or the teal::teal_transform_module()
documentation.
Examples
# general data example
data <- teal_data()
data <- within(data, {
CO2 <- CO2
CO2[["primary_key"]] <- seq_len(nrow(CO2))
})
join_keys(data) <- join_keys(join_key("CO2", "CO2", "primary_key"))
vars <- choices_selected(variable_choices(data[["CO2"]], c("Plant", "Type", "Treatment")))
app <- init(
data = data,
modules = modules(
tm_outliers(
outlier_var = list(
data_extract_spec(
dataname = "CO2",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["CO2"]], c("conc", "uptake")),
selected = "uptake",
multiple = FALSE,
fixed = FALSE
)
)
),
categorical_var = list(
data_extract_spec(
dataname = "CO2",
filter = filter_spec(
vars = vars,
choices = value_choices(data[["CO2"]], vars$selected),
selected = value_choices(data[["CO2"]], vars$selected),
multiple = TRUE
)
)
)
)
)
)
#> Initializing tm_outliers
#> Initializing reporter_previewer_module
if (interactive()) {
shinyApp(app$ui, app$server)
}
# CDISC data example
data <- teal_data()
data <- within(data, {
ADSL <- teal.data::rADSL
})
join_keys(data) <- default_cdisc_join_keys[names(data)]
fact_vars_adsl <- names(Filter(isTRUE, sapply(data[["ADSL"]], is.factor)))
vars <- choices_selected(variable_choices(data[["ADSL"]], fact_vars_adsl))
app <- init(
data = data,
modules = modules(
tm_outliers(
outlier_var = list(
data_extract_spec(
dataname = "ADSL",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["ADSL"]], c("AGE", "BMRKR1")),
selected = "AGE",
multiple = FALSE,
fixed = FALSE
)
)
),
categorical_var = list(
data_extract_spec(
dataname = "ADSL",
filter = filter_spec(
vars = vars,
choices = value_choices(data[["ADSL"]], vars$selected),
selected = value_choices(data[["ADSL"]], vars$selected),
multiple = TRUE
)
)
)
)
)
)
#> Initializing tm_outliers
#> Initializing reporter_previewer_module
if (interactive()) {
shinyApp(app$ui, app$server)
}