Generates a customizable scatterplot using ggplot2
.
This module allows users to select variables for the x and y axes,
color and size encodings, faceting options, and more. It supports log transformations,
trend line additions, and dynamic adjustments of point opacity and size through UI controls.
Usage
tm_g_scatterplot(
label = "Scatterplot",
x,
y,
color_by = NULL,
size_by = NULL,
row_facet = NULL,
col_facet = NULL,
plot_height = c(600, 200, 2000),
plot_width = NULL,
alpha = c(1, 0, 1),
shape = shape_names,
size = c(5, 1, 15),
max_deg = 5L,
rotate_xaxis_labels = FALSE,
ggtheme = c("gray", "bw", "linedraw", "light", "dark", "minimal", "classic", "void"),
pre_output = NULL,
post_output = NULL,
table_dec = 4,
ggplot2_args = teal.widgets::ggplot2_args()
)
Arguments
- label
(
character(1)
) Label shown in the navigation item for the module or module group. Formodules()
defaults to"root"
. SeeDetails
.- x
(
data_extract_spec
orlist
of multipledata_extract_spec
) Specifies variable names selected to plot along the x-axis by default.- y
(
data_extract_spec
orlist
of multipledata_extract_spec
) Specifies variable names selected to plot along the y-axis by default.- color_by
(
data_extract_spec
orlist
of multipledata_extract_spec
) optional, defines the color encoding. IfNULL
then no color encoding option will be displayed.- size_by
(
data_extract_spec
orlist
of multipledata_extract_spec
) optional, defines the point size encoding. IfNULL
then no size encoding option will be displayed.- row_facet
(
data_extract_spec
orlist
of multipledata_extract_spec
) optional, specifies the variable(s) for faceting rows.- col_facet
(
data_extract_spec
orlist
of multipledata_extract_spec
) optional, specifies the variable(s) for faceting columns.- plot_height
(
numeric
) optional, specifies the plot height as a three-element vector ofvalue
,min
, andmax
intended for use with a slider UI element.- plot_width
(
numeric
) optional, specifies the plot width as a three-element vector ofvalue
,min
, andmax
for a slider encoding the plot width.- alpha
-
(
integer(1)
orinteger(3)
) optional, specifies point opacity.When the length of
alpha
is one: the plot points will have a fixed opacity.When the length of
alpha
is three: the plot points opacity are dynamically adjusted based on vector ofvalue
,min
, andmax
.
- shape
(
character
) optional, character vector with the names of the shape, e.g.c("triangle", "square", "circle")
. It defaults toshape_names
. This is a complete list fromvignette("ggplot2-specs", package="ggplot2")
.- size
-
(
integer(1)
orinteger(3)
) optional, specifies point size.When the length of
size
is one: the plot point sizes will have a fixed size.When the length of
size
is three: the plot points size are dynamically adjusted based on vector ofvalue
,min
, andmax
.
- max_deg
(
integer
) optional, maximum degree for the polynomial trend line. Must not be less than 1.- rotate_xaxis_labels
(
logical
) optional, whether to rotate plot X axis labels. Does not rotate by default (FALSE
).- ggtheme
(
character
) optional,ggplot2
theme to be used by default. Defaults to"gray"
.- pre_output
(
shiny.tag
) optional, text or UI element to be displayed before the module's output, providing context or a title. with text placed before the output to put the output into context. For example a title.- post_output
(
shiny.tag
) optional, text or UI element to be displayed after the module's output, adding context or further instructions. Elements likeshiny::helpText()
are useful.- table_dec
(
integer
) optional, number of decimal places used to round numeric values in the table.- ggplot2_args
-
(
ggplot2_args
) object created byteal.widgets::ggplot2_args()
with settings for the module plot. The argument is merged with options variableteal.ggplot2_args
and default module setup.For more details see the vignette:
vignette("custom-ggplot2-arguments", package = "teal.widgets")
Note
For more examples, please see the vignette "Using scatterplot" via
vignette("using-scatterplot", package = "teal.modules.general")
.
Examples
# general data example
data <- teal_data()
data <- within(data, {
require(nestcolor)
CO2 <- CO2
})
app <- init(
data = data,
modules = modules(
tm_g_scatterplot(
label = "Scatterplot Choices",
x = data_extract_spec(
dataname = "CO2",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["CO2"]], c("conc", "uptake")),
selected = "conc",
multiple = FALSE,
fixed = FALSE
)
),
y = data_extract_spec(
dataname = "CO2",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["CO2"]], c("conc", "uptake")),
selected = "uptake",
multiple = FALSE,
fixed = FALSE
)
),
color_by = data_extract_spec(
dataname = "CO2",
select = select_spec(
label = "Select variable:",
choices = variable_choices(
data[["CO2"]],
c("Plant", "Type", "Treatment", "conc", "uptake")
),
selected = NULL,
multiple = FALSE,
fixed = FALSE
)
),
size_by = data_extract_spec(
dataname = "CO2",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["CO2"]], c("conc", "uptake")),
selected = "uptake",
multiple = FALSE,
fixed = FALSE
)
),
row_facet = data_extract_spec(
dataname = "CO2",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["CO2"]], c("Plant", "Type", "Treatment")),
selected = NULL,
multiple = FALSE,
fixed = FALSE
)
),
col_facet = data_extract_spec(
dataname = "CO2",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["CO2"]], c("Plant", "Type", "Treatment")),
selected = NULL,
multiple = FALSE,
fixed = FALSE
)
)
)
)
)
#> Initializing tm_g_scatterplot
#> Initializing reporter_previewer_module
if (interactive()) {
shinyApp(app$ui, app$server)
}
# CDISC data example
data <- teal_data()
data <- within(data, {
require(nestcolor)
ADSL <- rADSL
})
join_keys(data) <- default_cdisc_join_keys[names(data)]
app <- init(
data = data,
modules = modules(
tm_g_scatterplot(
label = "Scatterplot Choices",
x = data_extract_spec(
dataname = "ADSL",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["ADSL"]], c("AGE", "BMRKR1", "BMRKR2")),
selected = "AGE",
multiple = FALSE,
fixed = FALSE
)
),
y = data_extract_spec(
dataname = "ADSL",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["ADSL"]], c("AGE", "BMRKR1", "BMRKR2")),
selected = "BMRKR1",
multiple = FALSE,
fixed = FALSE
)
),
color_by = data_extract_spec(
dataname = "ADSL",
select = select_spec(
label = "Select variable:",
choices = variable_choices(
data[["ADSL"]],
c("AGE", "BMRKR1", "BMRKR2", "RACE", "REGION1")
),
selected = NULL,
multiple = FALSE,
fixed = FALSE
)
),
size_by = data_extract_spec(
dataname = "ADSL",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["ADSL"]], c("AGE", "BMRKR1")),
selected = "AGE",
multiple = FALSE,
fixed = FALSE
)
),
row_facet = data_extract_spec(
dataname = "ADSL",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["ADSL"]], c("BMRKR2", "RACE", "REGION1")),
selected = NULL,
multiple = FALSE,
fixed = FALSE
)
),
col_facet = data_extract_spec(
dataname = "ADSL",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["ADSL"]], c("BMRKR2", "RACE", "REGION1")),
selected = NULL,
multiple = FALSE,
fixed = FALSE
)
)
)
)
)
#> Initializing tm_g_scatterplot
#> Initializing reporter_previewer_module
if (interactive()) {
shinyApp(app$ui, app$server)
}