Module enables the creation of univariate and bivariate plots, facilitating the exploration of data distributions and relationships between two variables.
Usage
tm_g_bivariate(
label = "Bivariate Plots",
x,
y,
row_facet = NULL,
col_facet = NULL,
facet = !is.null(row_facet) || !is.null(col_facet),
color = NULL,
fill = NULL,
size = NULL,
use_density = FALSE,
color_settings = FALSE,
free_x_scales = FALSE,
free_y_scales = FALSE,
plot_height = c(600, 200, 2000),
plot_width = NULL,
rotate_xaxis_labels = FALSE,
swap_axes = FALSE,
ggtheme = c("gray", "bw", "linedraw", "light", "dark", "minimal", "classic", "void"),
ggplot2_args = teal.widgets::ggplot2_args(),
pre_output = NULL,
post_output = NULL,
transformators = list(),
decorators = list()
)
Arguments
- label
(
character(1)
) Label shown in the navigation item for the module or module group. Formodules()
defaults to"root"
. SeeDetails
.- x
(
data_extract_spec
orlist
of multipledata_extract_spec
) Variable names selected to plot along the x-axis by default. Can be numeric, factor or character. No empty selections are allowed.- y
(
data_extract_spec
orlist
of multipledata_extract_spec
) Variable names selected to plot along the y-axis by default. Can be numeric, factor or character.- row_facet
(
data_extract_spec
orlist
of multipledata_extract_spec
) optional, specification of the data variable(s) to use for faceting rows.- col_facet
(
data_extract_spec
orlist
of multipledata_extract_spec
) optional, specification of the data variable(s) to use for faceting columns.- facet
(
logical
) optional, specifies whether the facet encodingsui
elements are toggled on and shown to the user by default. Defaults toTRUE
if eitherrow_facet
orcolumn_facet
are supplied.- color
(
data_extract_spec
orlist
of multipledata_extract_spec
) optional, specification of the data variable(s) selected for the outline color inside the coloring settings. It will be applied whencolor_settings
is set toTRUE
.- fill
(
data_extract_spec
orlist
of multipledata_extract_spec
) optional, specification of the data variable(s) selected for the fill color inside the coloring settings. It will be applied whencolor_settings
is set toTRUE
.- size
(
data_extract_spec
orlist
of multipledata_extract_spec
) optional, specification of the data variable(s) selected for the size ofgeom_point
plots inside the coloring settings. It will be applied whencolor_settings
is set toTRUE
.- use_density
(
logical
) optional, indicates whether to plot density (TRUE
) or frequency (FALSE
). Defaults to frequency (FALSE
).- color_settings
(
logical
) Whether coloring, filling and size should be applied andUI
tool offered to the user.- free_x_scales
(
logical
) optional, whether X scaling shall be changeable. Does not allow scaling to be changed by default (FALSE
).- free_y_scales
(
logical
) optional, whether Y scaling shall be changeable. Does not allow scaling to be changed by default (FALSE
).- plot_height
(
numeric
) optional, specifies the plot height as a three-element vector ofvalue
,min
, andmax
intended for use with a slider UI element.- plot_width
(
numeric
) optional, specifies the plot width as a three-element vector ofvalue
,min
, andmax
for a slider encoding the plot width.- rotate_xaxis_labels
(
logical
) optional, whether to rotate plot X axis labels. Does not rotate by default (FALSE
).- swap_axes
(
logical
) optional, whether to swap X and Y axes. Defaults toFALSE
.- ggtheme
(
character
) optional,ggplot2
theme to be used by default. Defaults to"gray"
.- ggplot2_args
-
(
ggplot2_args
) object created byteal.widgets::ggplot2_args()
with settings for the module plot. The argument is merged with options variableteal.ggplot2_args
and default module setup.For more details see the vignette:
vignette("custom-ggplot2-arguments", package = "teal.widgets")
- pre_output
(
shiny.tag
) optional, text or UI element to be displayed before the module's output, providing context or a title. with text placed before the output to put the output into context. For example a title.- post_output
(
shiny.tag
) optional, text or UI element to be displayed after the module's output, adding context or further instructions. Elements likeshiny::helpText()
are useful.- transformators
(
list
ofteal_transform_module
) that will be applied to transform module's data input. To learn more checkvignette("data-transform-as-shiny-module", package = "teal")
.- decorators
-
(
list
ofteal_transform_module
, namedlist
ofteal_transform_module
) optional, decorator for tables or plots included in the module output reported. When a named list ofteal_transform_module
, the decorators are applied to the respective output objects.Otherwise, the decorators are applied to all objects, which is equivalent as using the name
default
.See section "Decorating Module" below for more details.
Note
For more examples, please see the vignette "Using bivariate plot" via
vignette("using-bivariate-plot", package = "teal.modules.general")
.
Decorating Module
This module generates the following objects, which can be modified in place using decorators:
plot
(ggplot2
)
For additional details and examples of decorators, refer to the vignette
vignette("decorate-modules-output", package = "teal")
or the teal::teal_transform_module()
documentation.
Examples
# general data example
data <- teal_data()
data <- within(data, {
require(nestcolor)
CO2 <- data.frame(CO2)
})
app <- init(
data = data,
modules = tm_g_bivariate(
x = data_extract_spec(
dataname = "CO2",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["CO2"]]),
selected = "conc",
fixed = FALSE
)
),
y = data_extract_spec(
dataname = "CO2",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["CO2"]]),
selected = "uptake",
multiple = FALSE,
fixed = FALSE
)
),
row_facet = data_extract_spec(
dataname = "CO2",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["CO2"]]),
selected = "Type",
fixed = FALSE
)
),
col_facet = data_extract_spec(
dataname = "CO2",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["CO2"]]),
selected = "Treatment",
fixed = FALSE
)
)
)
)
#> Initializing tm_g_bivariate
if (interactive()) {
shinyApp(app$ui, app$server)
}
# CDISC data example
data <- teal_data()
data <- within(data, {
require(nestcolor)
ADSL <- teal.data::rADSL
})
join_keys(data) <- default_cdisc_join_keys[names(data)]
app <- init(
data = data,
modules = tm_g_bivariate(
x = data_extract_spec(
dataname = "ADSL",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["ADSL"]]),
selected = "AGE",
fixed = FALSE
)
),
y = data_extract_spec(
dataname = "ADSL",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["ADSL"]]),
selected = "SEX",
multiple = FALSE,
fixed = FALSE
)
),
row_facet = data_extract_spec(
dataname = "ADSL",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["ADSL"]]),
selected = "ARM",
fixed = FALSE
)
),
col_facet = data_extract_spec(
dataname = "ADSL",
select = select_spec(
label = "Select variable:",
choices = variable_choices(data[["ADSL"]]),
selected = "COUNTRY",
fixed = FALSE
)
)
)
)
#> Initializing tm_g_bivariate
if (interactive()) {
shinyApp(app$ui, app$server)
}