Teal Module: Laboratory test results with highest grade post-baseline
Source:R/tm_t_abnormality_by_worst_grade.R
tm_t_abnormality_by_worst_grade.Rd
Teal Module: Laboratory test results with highest grade post-baseline
Usage
tm_t_abnormality_by_worst_grade(
label,
dataname,
parentname = ifelse(inherits(arm_var, "data_extract_spec"),
teal.transform::datanames_input(arm_var), "ADSL"),
arm_var,
id_var = teal.transform::choices_selected(teal.transform::variable_choices(dataname,
subset = "USUBJID"), selected = "USUBJID", fixed = TRUE),
paramcd,
atoxgr_var =
teal.transform::choices_selected(teal.transform::variable_choices(dataname, subset =
"ATOXGR"), selected = "ATOXGR", fixed = TRUE),
worst_high_flag_var =
teal.transform::choices_selected(teal.transform::variable_choices(dataname, subset =
"WGRHIFL"), selected = "WGRHIFL", fixed = TRUE),
worst_low_flag_var =
teal.transform::choices_selected(teal.transform::variable_choices(dataname, subset =
"WGRLOFL"), selected = "WGRLOFL", fixed = TRUE),
worst_flag_indicator =
teal.transform::choices_selected(teal.transform::value_choices(dataname, var_choices
= "WGRLOFL"), selected = "Y", fixed = TRUE),
add_total = TRUE,
drop_arm_levels = TRUE,
pre_output = NULL,
post_output = NULL,
basic_table_args = teal.widgets::basic_table_args()
)
Arguments
- label
(
character
)
menu item label of the module in the teal app.- dataname
(
character
)
analysis data used in teal module.- parentname
(
character
)
parent analysis data used in teal module, usually this refers toADSL
.- arm_var
(
choices_selected
ordata_extract_spec
)
object with all available choices and preselected option for variable names that can be used asarm_var
. It defines the grouping variable(s) in the results table. If there are two elements selected forarm_var
, second variable will be nested under the first variable.- id_var
(
choices_selected
ordata_extract_spec
)
object specifying the variable name for subject id.- paramcd
(
choices_selected
ordata_extract_spec
)
variable value designating the studied parameter.- atoxgr_var
(
teal.transform::choices_selected()
orteal.transform::data_extract_spec()
)
object with all available choices and preselected option for variable names that can be used as Analysis Toxicity Grade.- worst_high_flag_var
(
teal.transform::choices_selected()
orteal.transform::data_extract_spec()
)
object with all available choices and preselected option for variable names that can be used as Worst High Grade flag.- worst_low_flag_var
(
teal.transform::choices_selected()
orteal.transform::data_extract_spec()
)
object with all available choices and preselected option for variable names that can be used as Worst Low Grade flag.- worst_flag_indicator
(
teal.transform::choices_selected()
orteal.transform::data_extract_spec()
)
value indicating worst grade.- add_total
(
logical
)
whether to include column with total number of patients.- drop_arm_levels
(
logical
)
drop the unusedarm_var
levels. WhenTRUE
,arm_var
levels are set to those used in thedataname
dataset. WhenFALSE
,arm_var
levels are set to those used in theparantname
dataset.- pre_output
optional, (
shiny.tag
)
with text placed before the output to put the output into context. For example a title.- post_output
optional, (
shiny.tag
)
with text placed after the output to put the output into context. For example theshiny::helpText()
elements are useful.- basic_table_args
-
optional, (
basic_table_args
)
object created byteal.widgets::basic_table_args()
with settings for the module table. The argument is merged with optionteal.basic_table_args
and with default module arguments (hard coded in the module body).For more details, see the vignette:
vignette("custom-basic-table-arguments", package = "teal.widgets")
.
Examples
library(scda)
library(dplyr)
synthetic_cdisc_data_latest <- synthetic_cdisc_data("latest")
adsl <- synthetic_cdisc_data_latest$adsl
adlb <- synthetic_cdisc_data_latest$adlb %>%
filter(!AVISIT %in% c("SCREENING", "BASELINE"))
app <- init(
data = cdisc_data(
cdisc_dataset("ADSL", adsl,
code = "synthetic_cdisc_data_latest <- synthetic_cdisc_data('latest')
ADSL <- synthetic_cdisc_data_latest$adsl"
),
cdisc_dataset("ADLB", adlb,
code = "synthetic_cdisc_data_latest <- synthetic_cdisc_data('latest')
ADLB <- synthetic_cdisc_data('latest')$adlb %>%
filter(!AVISIT %in% c('SCREENING', 'BASELINE'))"
)
),
modules = modules(
tm_t_abnormality_by_worst_grade(
label = "Laboratory test results with highest grade post-baseline",
dataname = "ADLB",
arm_var = choices_selected(
choices = variable_choices(adsl, subset = c("ARM", "ARMCD")),
selected = "ARM"
),
paramcd = choices_selected(
choices = value_choices(adlb, "PARAMCD", "PARAM"),
selected = c("ALT", "CRP", "IGA")
),
add_total = FALSE
)
),
filter = (
list(
ADSL = list(SAFFL = "Y"),
ADLB = list(ONTRTFL = "Y")
)
)
)
#> [INFO] 2022-10-14 09:10:19.2484 pid:3139 token:[] teal.modules.clinical Initializing tm_t_abnormality_by_worst_grade
if (FALSE) {
shinyApp(app$ui, app$server)
}