Skip to contents

Scatter Plot Teal Module For Biomarker Analysis

Usage

tm_g_gh_scatterplot(
  label,
  dataname,
  param_var,
  param,
  xaxis_var,
  yaxis_var,
  trt_group,
  color_manual = NULL,
  shape_manual = NULL,
  facet_ncol = 2,
  trt_facet = FALSE,
  reg_line = FALSE,
  rotate_xlab = FALSE,
  hline = NULL,
  vline = NULL,
  plot_height = c(500, 200, 2000),
  plot_width = NULL,
  font_size = c(12, 8, 20),
  dot_size = c(1, 1, 12),
  reg_text_size = c(3, 3, 10),
  pre_output = NULL,
  post_output = NULL
)

Arguments

label

menu item label of the module in the teal app.

dataname

analysis data passed to the data argument of teal init. E.g. ADaM structured laboratory data frame ADLB.

param_var

name of variable containing biomarker codes e.g. PARAMCD.

param

biomarker selected.

xaxis_var

name of variable containing biomarker results displayed on x-axis e.g. BASE.

yaxis_var

name of variable containing biomarker results displayed on y-axis e.g. AVAL.

trt_group

choices_selected object with available choices and pre-selected option for variable names representing treatment group e.g. ARM.

color_manual

vector of colors applied to treatment values.

shape_manual

vector of symbols applied to LOQ values.

facet_ncol

numeric value indicating number of facets per row.

trt_facet

facet by treatment group trt_group.

reg_line

include regression line and annotations for slope and coefficient in visualization. Use with facet TRUE.

rotate_xlab

45 degree rotation of x-axis values.

hline

y-axis value to position of horizontal line.

vline

x-axis value to position a vertical line.

plot_height

controls plot height.

plot_width

optional, controls plot width.

font_size

font size control for title, x-axis label, y-axis label and legend.

dot_size

plot dot size.

reg_text_size

font size control for regression line annotations.

pre_output

(shiny.tag, optional)
with text placed before the output to put the output into context. For example a title.

post_output

(shiny.tag, optional) with text placed after the output to put the output into context. For example the shiny::helpText() elements are useful.

Author

Nick Paszty (npaszty) paszty.nicholas@gene.com

Balazs Toth (tothb2) toth.balazs@gene.com

Examples

# Example using ADaM structure analysis dataset.
library(scda)

# original ARM value = dose value
arm_mapping <- list(
  "A: Drug X" = "150mg QD",
  "B: Placebo" = "Placebo",
  "C: Combination" = "Combination"
)

ADSL <- synthetic_cdisc_data("latest")$adsl
ADLB <- synthetic_cdisc_data("latest")$adlb
var_labels <- lapply(ADLB, function(x) attributes(x)$label)
ADLB <- ADLB %>%
  dplyr::mutate(
    AVISITCD = dplyr::case_when(
      AVISIT == "SCREENING" ~ "SCR",
      AVISIT == "BASELINE" ~ "BL",
      grepl("WEEK", AVISIT) ~ paste("W", stringr::str_extract(AVISIT, "(?<=(WEEK ))[0-9]+")),
      TRUE ~ as.character(NA)
    ),
    AVISITCDN = dplyr::case_when(
      AVISITCD == "SCR" ~ -2,
      AVISITCD == "BL" ~ 0,
      grepl("W", AVISITCD) ~ as.numeric(gsub("[^0-9]*", "", AVISITCD)),
      TRUE ~ as.numeric(NA)
    ),
    AVISITCD = factor(AVISITCD) %>% stats::reorder(AVISITCDN),
    TRTORD = dplyr::case_when(
      ARMCD == "ARM C" ~ 1,
      ARMCD == "ARM B" ~ 2,
      ARMCD == "ARM A" ~ 3
    ),
    ARM = as.character(arm_mapping[match(ARM, names(arm_mapping))]),
    ARM = factor(ARM) %>% stats::reorder(TRTORD),
    ACTARM = as.character(arm_mapping[match(ACTARM, names(arm_mapping))]),
    ACTARM = factor(ACTARM) %>% stats::reorder(TRTORD)
  )
attr(ADLB[["ARM"]], "label") <- var_labels[["ARM"]]
attr(ADLB[["ACTARM"]], "label") <- var_labels[["ACTARM"]]

app <- init(
  data = cdisc_data(
    adsl <- cdisc_dataset("ADSL", ADSL, code = "ADSL <- synthetic_cdisc_data(\"latest\")$adsl"),
    cdisc_dataset(
      "ADLB",
      ADLB,
      code = [1421 chars quoted with '"'],
      vars = list(ADSL = adsl, arm_mapping = arm_mapping)
    ),
    check = TRUE
  ),
  modules = modules(
    tm_g_gh_scatterplot(
      label = "Scatter Plot",
      dataname = "ADLB",
      param_var = "PARAMCD",
      param = choices_selected(c("ALT", "CRP", "IGA"), "ALT"),
      xaxis_var = choices_selected(c("AVAL", "BASE", "CHG", "PCHG"), "BASE"),
      yaxis_var = choices_selected(c("AVAL", "BASE", "CHG", "PCHG"), "AVAL"),
      trt_group = choices_selected(c("ARM", "ACTARM"), "ARM"),
      color_manual = c(
        "150mg QD" = "#000000",
        "Placebo" = "#3498DB",
        "Combination" = "#E74C3C"
      ),
      shape_manual = c("N" = 1, "Y" = 2, "NA" = 0),
      plot_height = c(500, 200, 2000),
      facet_ncol = 2,
      trt_facet = FALSE,
      reg_line = FALSE,
      font_size = c(12, 8, 20),
      dot_size = c(1, 1, 12),
      reg_text_size = c(3, 3, 10)
    )
  )
)
#> [INFO] 2022-06-14 17:42:56.6670 pid:1172 token:[] teal.goshawk Initializing tm_g_gh_scatterplot
if (FALSE) {
shinyApp(app$ui, app$server)
}