scda
TealDatasetConnector
scda_dataset_connector.Rd
Usage
scda_dataset_connector(
dataname,
scda_dataname = tolower(dataname),
scda_name = "latest",
keys = character(0),
label = character(0),
code = character(0),
script = character(0),
metadata = list(type = "scda", version = scda_name)
)
scda_cdisc_dataset_connector(
dataname,
scda_dataname = tolower(dataname),
scda_name = "latest",
keys = get_cdisc_keys(dataname),
parent = if (identical(dataname, "ADSL")) character(0L) else "ADSL",
label = character(0),
code = character(0),
script = character(0),
metadata = list(type = "scda", version = scda_name)
)
Arguments
- dataname
(
character
)
A given name for the dataset it may not contain spaces- scda_dataname
(
character
) whichscda
dataset to use (e.g.adsl
).- scda_name
(
character
) which version ofscda
data to take, default "latest".- keys
optional, (
character
)
vector of dataset primary keys column names- label
(
character
)
Label to describe the dataset.- code
(
character
)
A character string defining code to modifyraw_data
from this dataset. To modify current dataset code should contain at least one assignment to object defined indataname
argument. For example ifdataname = ADSL
example code should containADSL <- <some R code>
. Can't be used simultaneously withscript
- script
(
character
)
Alternatively tocode
- location of the file containing modification code. Can't be used simultaneously withscript
.- metadata
(named
list
,NULL
orCallableFunction
)
Field containing either the metadata about the dataset (each element of the list should be atomic and length one) or aCallableFuntion
to pull the metadata from a connection. This should return alist
or an object which can be converted to a list withas.list
.- parent
(
character
, optional) parent dataset name
Details
Create a TealDatasetConnector
for dataset in scda
Create a CDISCTealDatasetConnector
from scda
data
Examples
library(scda)
x <- scda_dataset_connector(
dataname = "ADSL", scda_dataname = "adsl",
)
x$get_code()
#> [1] "ADSL <- scda::synthetic_cdisc_dataset(dataset_name = \"adsl\", archive_name = \"latest\")"
load_dataset(x)
get_dataset(x)
#> A TealDataset object containing the following data.frame (400 rows and 55 columns):
#> STUDYID USUBJID SUBJID SITEID AGE AGEU SEX
#> 1 AB12345 AB12345-CHN-3-id-128 id-128 CHN-3 32 YEARS M
#> 2 AB12345 AB12345-CHN-15-id-262 id-262 CHN-15 35 YEARS M
#> 3 AB12345 AB12345-RUS-3-id-378 id-378 RUS-3 30 YEARS F
#> 4 AB12345 AB12345-CHN-11-id-220 id-220 CHN-11 26 YEARS F
#> 5 AB12345 AB12345-CHN-7-id-267 id-267 CHN-7 40 YEARS M
#> 6 AB12345 AB12345-CHN-15-id-201 id-201 CHN-15 49 YEARS M
#> RACE ETHNIC COUNTRY DTHFL INVID
#> 1 ASIAN HISPANIC OR LATINO CHN Y INV ID CHN-3
#> 2 BLACK OR AFRICAN AMERICAN NOT HISPANIC OR LATINO CHN N INV ID CHN-15
#> 3 ASIAN NOT HISPANIC OR LATINO RUS N INV ID RUS-3
#> 4 ASIAN NOT HISPANIC OR LATINO CHN N INV ID CHN-11
#> 5 ASIAN NOT HISPANIC OR LATINO CHN N INV ID CHN-7
#> 6 ASIAN NOT HISPANIC OR LATINO CHN Y INV ID CHN-15
#> INVNAM ARM ARMCD ACTARM ACTARMCD TRT01P
#> 1 Dr. CHN-3 Doe A: Drug X ARM A A: Drug X ARM A A: Drug X
#> 2 Dr. CHN-15 Doe C: Combination ARM C C: Combination ARM C C: Combination
#> 3 Dr. RUS-3 Doe C: Combination ARM C C: Combination ARM C C: Combination
#> 4 Dr. CHN-11 Doe B: Placebo ARM B B: Placebo ARM B B: Placebo
#> 5 Dr. CHN-7 Doe B: Placebo ARM B B: Placebo ARM B B: Placebo
#> 6 Dr. CHN-15 Doe C: Combination ARM C C: Combination ARM C C: Combination
#> TRT01A TRT02P TRT02A REGION1 STRATA1 STRATA2
#> 1 A: Drug X B: Placebo A: Drug X Asia C S2
#> 2 C: Combination B: Placebo C: Combination Asia C S1
#> 3 C: Combination A: Drug X B: Placebo Eurasia A S1
#> 4 B: Placebo B: Placebo B: Placebo Asia B S2
#> 5 B: Placebo C: Combination A: Drug X Asia C S1
#> 6 C: Combination B: Placebo C: Combination Asia C S2
#> BMRKR1 BMRKR2 ITTFL SAFFL BMEASIFL BEP01FL AEWITHFL RANDDT
#> 1 14.424934 MEDIUM Y Y Y Y N 2019-02-22
#> 2 4.055463 LOW Y Y N N Y 2019-02-26
#> 3 2.803240 HIGH Y Y Y N N 2019-02-24
#> 4 10.262734 MEDIUM Y Y Y Y N 2019-02-27
#> 5 6.206763 LOW Y Y N N N 2019-03-01
#> 6 6.906799 MEDIUM Y Y Y N N 2019-03-05
#> TRTSDTM TRTEDTM TRT01SDTM
#> 1 2019-02-24 11:09:25 2022-02-12 04:28:08 2019-02-24 11:09:25
#> 2 2019-02-26 09:05:10 2022-02-26 03:05:10 2019-02-26 09:05:10
#> 3 2019-02-28 03:19:22 2022-02-27 21:19:22 2019-02-28 03:19:22
#> 4 2019-03-01 13:33:19 2022-03-01 07:33:19 2019-03-01 13:33:19
#> 5 2019-03-02 00:09:33 2022-03-01 18:09:33 2019-03-02 00:09:33
#> 6 2019-03-05 15:24:07 2022-02-19 04:06:48 2019-03-05 15:24:07
#> TRT01EDTM TRT02SDTM TRT02EDTM
#> 1 2021-02-11 22:28:08 2021-02-11 22:28:08 2022-02-12 04:28:08
#> 2 2021-02-25 21:05:10 2021-02-25 21:05:10 2022-02-26 03:05:10
#> 3 2021-02-27 15:19:22 2021-02-27 15:19:22 2022-02-27 21:19:22
#> 4 2021-03-01 01:33:19 2021-03-01 01:33:19 2022-03-01 07:33:19
#> 5 2021-03-01 12:09:33 2021-03-01 12:09:33 2022-03-01 18:09:33
#> 6 2021-02-18 22:06:48 2021-02-18 22:06:48 2022-02-19 04:06:48
#> AP01SDTM AP01EDTM AP02SDTM
#> 1 2019-02-24 11:09:25 2021-02-11 22:28:08 2021-02-11 22:28:08
#> 2 2019-02-26 09:05:10 2021-02-25 21:05:10 2021-02-25 21:05:10
#> 3 2019-02-28 03:19:22 2021-02-27 15:19:22 2021-02-27 15:19:22
#> 4 2019-03-01 13:33:19 2021-03-01 01:33:19 2021-03-01 01:33:19
#> 5 2019-03-02 00:09:33 2021-03-01 12:09:33 2021-03-01 12:09:33
#> 6 2019-03-05 15:24:07 2021-02-18 22:06:48 2021-02-18 22:06:48
#> AP02EDTM EOSSTT EOTSTT EOSDT EOSDY DCSREAS
#> 1 2022-02-12 04:28:08 DISCONTINUED DISCONTINUED 2022-02-12 1084 DEATH
#> 2 2022-02-26 03:05:10 COMPLETED COMPLETED 2022-02-26 1096 <NA>
#> 3 2022-02-27 21:19:22 COMPLETED COMPLETED 2022-02-27 1096 <NA>
#> 4 2022-03-01 07:33:19 COMPLETED COMPLETED 2022-03-01 1096 <NA>
#> 5 2022-03-01 18:09:33 COMPLETED COMPLETED 2022-03-01 1096 <NA>
#> 6 2022-02-19 04:06:48 DISCONTINUED DISCONTINUED 2022-02-19 1082 DEATH
#> DTHDT DTHCAUS DTHCAT LDDTHELD LDDTHGR1 LSTALVDT DTHADY
#> 1 2022-03-06 ADVERSE EVENT ADVERSE EVENT 22 <=30 2022-03-06 1105
#> 2 <NA> <NA> <NA> NA <NA> 2022-03-17 NA
#> 3 <NA> <NA> <NA> NA <NA> 2022-03-11 NA
#> 4 <NA> <NA> <NA> NA <NA> 2022-03-26 NA
#> 5 <NA> <NA> <NA> NA <NA> 2022-03-15 NA
#> 6 2022-02-22 ADVERSE EVENT ADVERSE EVENT 3 <=30 2022-02-22 1084
#> ADTHAUT
#> 1 Yes
#> 2 <NA>
#> 3 <NA>
#> 4 <NA>
#> 5 <NA>
#> 6 Yes
#> ...
get_dataset(x)$get_metadata()
#> $type
#> [1] "scda"
#>
#> $version
#> [1] "latest"
#>
x$get_raw_data()
#> # A tibble: 400 × 55
#> STUDYID USUBJID SUBJID SITEID AGE AGEU SEX RACE ETHNIC COUNTRY DTHFL
#> * <chr> <chr> <chr> <chr> <int> <fct> <fct> <fct> <fct> <fct> <fct>
#> 1 AB12345 AB12345-C… id-128 CHN-3 32 YEARS M ASIAN HISPA… CHN Y
#> 2 AB12345 AB12345-C… id-262 CHN-15 35 YEARS M BLAC… NOT H… CHN N
#> 3 AB12345 AB12345-R… id-378 RUS-3 30 YEARS F ASIAN NOT H… RUS N
#> 4 AB12345 AB12345-C… id-220 CHN-11 26 YEARS F ASIAN NOT H… CHN N
#> 5 AB12345 AB12345-C… id-267 CHN-7 40 YEARS M ASIAN NOT H… CHN N
#> 6 AB12345 AB12345-C… id-201 CHN-15 49 YEARS M ASIAN NOT H… CHN Y
#> 7 AB12345 AB12345-U… id-45 USA-1 34 YEARS F ASIAN NOT H… USA N
#> 8 AB12345 AB12345-U… id-261 USA-1 32 YEARS F ASIAN NOT H… USA N
#> 9 AB12345 AB12345-N… id-173 NGA-11 24 YEARS F BLAC… NOT H… NGA N
#> 10 AB12345 AB12345-C… id-307 CHN-1 24 YEARS M ASIAN NOT H… CHN Y
#> # ℹ 390 more rows
#> # ℹ 44 more variables: INVID <chr>, INVNAM <chr>, ARM <fct>, ARMCD <fct>,
#> # ACTARM <fct>, ACTARMCD <fct>, TRT01P <fct>, TRT01A <fct>, TRT02P <fct>,
#> # TRT02A <fct>, REGION1 <fct>, STRATA1 <fct>, STRATA2 <fct>, BMRKR1 <dbl>,
#> # BMRKR2 <fct>, ITTFL <fct>, SAFFL <fct>, BMEASIFL <fct>, BEP01FL <fct>,
#> # AEWITHFL <fct>, RANDDT <date>, TRTSDTM <dttm>, TRTEDTM <dttm>,
#> # TRT01SDTM <dttm>, TRT01EDTM <dttm>, TRT02SDTM <dttm>, TRT02EDTM <dttm>, …
metadata_fun <- callable_function(function(a) list(type = a))
metadata_fun$set_args(args = list(a = "scda"))
y <- scda_dataset_connector(
dataname = "ADSL", scda_dataname = "adsl",
metadata = metadata_fun
)
load_dataset(y)
get_dataset(y)$get_metadata()
#> $type
#> [1] "scda"
#>