Skip to contents

[Stable] Universal function to pass data to teal application

Usage

teal_data(..., join_keys, code = "", check = FALSE)

Arguments

...

(TealDataConnector, TealDataset, TealDatasetConnector)
objects

join_keys

(JoinKeys) or a single (JoinKeySet)
(optional) object with dataset column relationships used for joining. If empty then no joins between pairs of objects

code

(character) code to reproduce the datasets.

check

(logical) reproducibility check - whether to perform a check that the pre-processing code included in the object definitions actually produces those objects. If check is true and preprocessing code is empty an error will be thrown.

Value

(TealData)

Examples

x1 <- dataset(
  "x1",
  iris,
  code = "x1 <- iris"
)

x2 <- dataset(
  "x2",
  mtcars,
  code = "x2 <- mtcars"
)

teal_data(x1, x2)
#> A TealData object containing 2 TealDataset/TealDatasetConnector object(s) as element(s):
#> --> Element 1:
#> A TealDataset object containing the following data.frame (150 rows and 5 columns):
#>   Sepal.Length Sepal.Width Petal.Length Petal.Width Species
#> 1          5.1         3.5          1.4         0.2  setosa
#> 2          4.9         3.0          1.4         0.2  setosa
#> 3          4.7         3.2          1.3         0.2  setosa
#> 4          4.6         3.1          1.5         0.2  setosa
#> 5          5.0         3.6          1.4         0.2  setosa
#> 6          5.4         3.9          1.7         0.4  setosa
#> 
#> ...
#>     Sepal.Length Sepal.Width Petal.Length Petal.Width   Species
#> 145          6.7         3.3          5.7         2.5 virginica
#> 146          6.7         3.0          5.2         2.3 virginica
#> 147          6.3         2.5          5.0         1.9 virginica
#> 148          6.5         3.0          5.2         2.0 virginica
#> 149          6.2         3.4          5.4         2.3 virginica
#> 150          5.9         3.0          5.1         1.8 virginica
#> --> Element 2:
#> A TealDataset object containing the following data.frame (32 rows and 11 columns):
#>                    mpg cyl disp  hp drat    wt  qsec vs am gear carb
#> Mazda RX4         21.0   6  160 110 3.90 2.620 16.46  0  1    4    4
#> Mazda RX4 Wag     21.0   6  160 110 3.90 2.875 17.02  0  1    4    4
#> Datsun 710        22.8   4  108  93 3.85 2.320 18.61  1  1    4    1
#> Hornet 4 Drive    21.4   6  258 110 3.08 3.215 19.44  1  0    3    1
#> Hornet Sportabout 18.7   8  360 175 3.15 3.440 17.02  0  0    3    2
#> Valiant           18.1   6  225 105 2.76 3.460 20.22  1  0    3    1
#> 
#> ...
#>                 mpg cyl  disp  hp drat    wt qsec vs am gear carb
#> Porsche 914-2  26.0   4 120.3  91 4.43 2.140 16.7  0  1    5    2
#> Lotus Europa   30.4   4  95.1 113 3.77 1.513 16.9  1  1    5    2
#> Ford Pantera L 15.8   8 351.0 264 4.22 3.170 14.5  0  1    5    4
#> Ferrari Dino   19.7   6 145.0 175 3.62 2.770 15.5  0  1    5    6
#> Maserati Bora  15.0   8 301.0 335 3.54 3.570 14.6  0  1    5    8
#> Volvo 142E     21.4   4 121.0 109 4.11 2.780 18.6  1  1    4    2