This function is intended for use inside custom split functions. It applies the current split as if it had no custom splitting function so that those default splits can be further manipulated.
Arguments
- spl
(
Split
)
aSplit
object defining a partitioning or analysis/tabulation of the data.- df
(
data.frame
ortibble
)
dataset.- vals
(
ANY
)
already calculated/known values of the split. Generally should be left asNULL
.- labels
(
character
)
labels associated withvals
. Should beNULL
whenevervals
is, which should almost always be the case.- trim
(
flag
)
whether groups corresponding to empty data subsets should be removed. Defaults toFALSE
.
Value
The result of the split being applied as if it had no custom split function. See custom_split_funs.
Examples
uneven_splfun <- function(df, spl, vals = NULL, labels = NULL, trim = FALSE) {
ret <- do_base_split(spl, df, vals, labels, trim)
if (NROW(df) == 0) {
ret <- lapply(ret, function(x) x[1])
}
ret
}
lyt <- basic_table() %>%
split_cols_by("ARM") %>%
split_cols_by_multivar(c("USUBJID", "AESEQ", "BMRKR1"),
varlabels = c("N", "E", "BMR1"),
split_fun = uneven_splfun
) %>%
analyze_colvars(list(
USUBJID = function(x, ...) length(unique(x)),
AESEQ = max,
BMRKR1 = mean
))
tbl <- build_table(lyt, subset(ex_adae, as.numeric(ARM) <= 2))
tbl
#> A: Drug X B: Placebo C: Combination
#> N E BMR1 N E BMR1 N
#> —————————————————————————————————————————————————————————————————————————————
#> 122 10 6.09356345928374 123 10 5.86496605625578 0