Paginate an rtables
table in the vertical and/or horizontal
direction, as required for the specified page size.
Usage
pag_tt_indices(
tt,
lpp = 15,
min_siblings = 2,
nosplitin = character(),
colwidths = NULL,
max_width = NULL,
verbose = FALSE
)
paginate_table(
tt,
page_type = "letter",
font_family = "Courier",
font_size = 8,
lineheight = 1,
landscape = FALSE,
pg_width = NULL,
pg_height = NULL,
margins = c(top = 0.5, bottom = 0.5, left = 0.75, right = 0.75),
lpp = NA_integer_,
cpp = NA_integer_,
min_siblings = 2,
nosplitin = character(),
colwidths = NULL,
tf_wrap = FALSE,
max_width = NULL,
verbose = FALSE
)
Arguments
- tt
TableTree (or related class). A TableTree object representing a populated table.
- lpp
numeric. Maximum lines per page including (re)printed header and context rows
- min_siblings
numeric. Minimum sibling rows which must appear on either side of pagination row for a mid-subtable split to be valid. Defaults to 2.
- nosplitin
character. List of names of sub-tables where page-breaks are not allowed, regardless of other considerations. Defaults to none.
- colwidths
numeric vector. Column widths for use with vertical pagination.
- max_width
integer(1), character(1) or NULL. Width that title and footer (including footnotes) materials should be word-wrapped to. If NULL, it is set to the current print width of the session (
getOption("width")
). If set to"auto"
, the width of the table (plus any table inset) is used. Ignored completely iftf_wrap
isFALSE
.- verbose
logical(1). Should extra debugging messages be shown. Defaults to
FALSE
.- page_type
character(1). Name of a page type. See
page_types
. Ignored whenpg_width
andpg_height
are set directly.- font_family
character(1). Name of a font family. An error will be thrown if the family named is not monospaced. Defaults to Courier.
- font_size
numeric(1). Font size, defaults to 12.
- lineheight
numeric(1). Line height, defaults to 1.
- landscape
logical(1). Should the dimensions of
page_type
be inverted for landscape? Defaults toFALSE
, ignored whenpg_width
andpg_height
are set directly.- pg_width
numeric(1). Page width in inches.
- pg_height
numeric(1). Page height in inches.
- margins
numeric(4). Named numeric vector containing
'bottom'
,'left'
,'top'
, and'right'
margins in inches. Defaults to.5
inches for both vertical margins and.75
for both horizontal margins.- cpp
numeric(1) or NULL. Width (in characters) of the pages for horizontal pagination.
NA
(the default) indicates cpp should be inferred from the page size;NULL
indicates no horizontal pagination should be done regardless of page size.- tf_wrap
logical(1). Should the texts for title, subtitle, and footnotes be wrapped?
Value
for pag_tt_indices
a list of paginated-groups of row-indices of tt
. For paginate_table
,
The subtables defined by subsetting by the indices defined by pag_tt_indices
.
Details
rtables
pagination is context aware, meaning that label rows and
row-group summaries (content rows) are repeated after (vertical)
pagination, as appropriate. This allows the reader to immediately
understand where they are in the table after turning to a new page,
but does also mean that a rendered, paginated table will take up
more lines of text than rendering the table without pagination
would.
Pagination also takes into account word-wrapping of title, footer, column-label, and formatted cell value content.
Vertical pagination information (pagination data.frame) is created
using (make_row_df
)
Horizontal pagination is performed by creating a pagination dataframe for the columns, and then applying the same algorithm used for vertical pagination to it.
If physical page size and font information are specified, these are
used to derive lines-per-page (lpp
) and characters-per-page
(cpp
) values.
The full multi-direction pagination algorithm then is as follows:
Adjust
lpp
andcpp
to account for rendered elements that are not rows (columns)
titles/footers/column labels, and horizontal dividers in the vertical pagination case
row-labels, table_inset, and top-left materials in the horizontal case
Perform 'forced pagination' representing page-by row splits, generating 1 or more tables
Perform vertical pagination separately on each table generated in (1)
Perform horizontal pagination on the entire table and apply the results to each table page generated in (1)-(2)
Return a list of subtables representing full bi-directional pagination
Pagination in both directions is done using the Core Pagination Algorithm
implemented in the formatters
package:
Pagination Algorithm
Pagination is performed independently in the vertical and horizontal directions based solely on a pagination data.frame, which includes the following information for each row/column:
number of lines/characters rendering the row will take after word-wrapping (
self_extent
)the indices (
reprint_inds
) and number of lines (par_extent
) of the rows which act as context for the rowthe row's number of siblings and position within its siblings
Given lpp
(cpp
) already adjusted for rendered elements which
are not rows/columns and a dataframe of pagination information,
pagination is performed via the following algorithm, and with a
start = 1
:
Core Pagination Algorithm:
Initial guess for pagination point is
start + lpp
(start + cpp
)While the guess is not a valid pagination position, and
guess > start
, decrement guess and repeat
an error is thrown if all possible pagination positions between
start
andstart + lpp
(start + cpp
) would ever be< start
after decrementing
Retain pagination index
if pagination point was less than
NROW(tt)
(ncol(tt)
), setstart
topos + 1
, and repeat steps (1) - (4).
Validating pagination position:
Given an (already adjusted) lpp
or cpp
value, a pagination is invalid if:
-
The rows/columns on the page would take more than (adjusted)
lpp
lines/cpp
characters to render includingword-wrapping
(vertical only) context repetition
(vertical only) footnote messages and or section divider lines take up too many lines after rendering rows
(vertical only) row is a label or content (row-group summary) row
(vertical only) row at the pagination point has siblings, and it has less than
min_siblings
preceding or following siblingspagination would occur within a sub-table listed in
nosplitin
Examples
s_summary <- function(x) {
if (is.numeric(x)) {
in_rows(
"n" = rcell(sum(!is.na(x)), format = "xx"),
"Mean (sd)" = rcell(c(mean(x, na.rm = TRUE), sd(x, na.rm = TRUE)),
format = "xx.xx (xx.xx)"),
"IQR" = rcell(IQR(x, na.rm = TRUE), format = "xx.xx"),
"min - max" = rcell(range(x, na.rm = TRUE), format = "xx.xx - xx.xx")
)
} else if (is.factor(x)) {
vs <- as.list(table(x))
do.call(in_rows, lapply(vs, rcell, format = "xx"))
} else (
stop("type not supported")
)
}
lyt <- basic_table() %>%
split_cols_by(var = "ARM") %>%
analyze(c("AGE", "SEX", "BEP01FL", "BMRKR1", "BMRKR2", "COUNTRY"), afun = s_summary)
tbl <- build_table(lyt, ex_adsl)
tbl
#> A: Drug X B: Placebo C: Combination
#> ———————————————————————————————————————————————————————————————————
#> AGE
#> n 134 134 132
#> Mean (sd) 33.77 (6.55) 35.43 (7.90) 35.43 (7.72)
#> IQR 11.00 10.00 10.00
#> min - max 21.00 - 50.00 21.00 - 62.00 20.00 - 69.00
#> SEX
#> F 79 77 66
#> M 51 55 60
#> U 3 2 4
#> UNDIFFERENTIATED 1 0 2
#> BEP01FL
#> Y 68 63 66
#> N 66 71 66
#> BMRKR1
#> n 134 134 132
#> Mean (sd) 5.97 (3.55) 5.70 (3.31) 5.62 (3.49)
#> IQR 4.16 4.06 3.88
#> min - max 0.41 - 17.67 0.65 - 14.24 0.17 - 21.39
#> BMRKR2
#> LOW 50 45 40
#> MEDIUM 37 56 42
#> HIGH 47 33 50
#> COUNTRY
#> CHN 74 81 64
#> USA 10 13 17
#> BRA 13 7 10
#> PAK 12 9 10
#> NGA 8 7 11
#> RUS 5 8 6
#> JPN 5 4 9
#> GBR 4 3 2
#> CAN 3 2 3
#> CHE 0 0 0
nrow(tbl)
#> [1] 33
row_paths_summary(tbl)
#> rowname node_class path
#> ———————————————————————————————————————————————————————————————————————————————————————————————————
#> AGE LabelRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, AGE
#> n DataRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, AGE, n
#> Mean (sd) DataRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, AGE, Mean (sd)
#> IQR DataRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, AGE, IQR
#> min - max DataRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, AGE, min - max
#> SEX LabelRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, SEX
#> F DataRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, SEX, F
#> M DataRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, SEX, M
#> U DataRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, SEX, U
#> UNDIFFERENTIATED DataRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, SEX, UNDIFFERENTIATED
#> BEP01FL LabelRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, BEP01FL
#> Y DataRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, BEP01FL, Y
#> N DataRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, BEP01FL, N
#> BMRKR1 LabelRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, BMRKR1
#> n DataRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, BMRKR1, n
#> Mean (sd) DataRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, BMRKR1, Mean (sd)
#> IQR DataRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, BMRKR1, IQR
#> min - max DataRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, BMRKR1, min - max
#> BMRKR2 LabelRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, BMRKR2
#> LOW DataRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, BMRKR2, LOW
#> MEDIUM DataRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, BMRKR2, MEDIUM
#> HIGH DataRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, BMRKR2, HIGH
#> COUNTRY LabelRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, COUNTRY
#> CHN DataRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, COUNTRY, CHN
#> USA DataRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, COUNTRY, USA
#> BRA DataRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, COUNTRY, BRA
#> PAK DataRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, COUNTRY, PAK
#> NGA DataRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, COUNTRY, NGA
#> RUS DataRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, COUNTRY, RUS
#> JPN DataRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, COUNTRY, JPN
#> GBR DataRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, COUNTRY, GBR
#> CAN DataRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, COUNTRY, CAN
#> CHE DataRow ma_AGE_SEX_BEP01FL_BMRKR1_BMRKR2_COUNTRY, COUNTRY, CHE
tbls <- paginate_table(tbl, lpp = 15)
mf <- matrix_form(tbl, indent_rownames = TRUE)
w_tbls <- propose_column_widths(mf) # so that we have the same column widths
tmp <- lapply(tbls, function(tbli) {
cat(toString(tbli, widths = w_tbls))
cat("\n\n")
cat("~~~~ PAGE BREAK ~~~~")
cat("\n\n")
})
#> A: Drug X B: Placebo C: Combination
#> ———————————————————————————————————————————————————————————————————
#> AGE
#> n 134 134 132
#> Mean (sd) 33.77 (6.55) 35.43 (7.90) 35.43 (7.72)
#> IQR 11.00 10.00 10.00
#> min - max 21.00 - 50.00 21.00 - 62.00 20.00 - 69.00
#> SEX
#> F 79 77 66
#> M 51 55 60
#> U 3 2 4
#> UNDIFFERENTIATED 1 0 2
#> BEP01FL
#> Y 68 63 66
#> N 66 71 66
#>
#>
#> ~~~~ PAGE BREAK ~~~~
#>
#> A: Drug X B: Placebo C: Combination
#> ———————————————————————————————————————————————————————————————————
#> BMRKR1
#> n 134 134 132
#> Mean (sd) 5.97 (3.55) 5.70 (3.31) 5.62 (3.49)
#> IQR 4.16 4.06 3.88
#> min - max 0.41 - 17.67 0.65 - 14.24 0.17 - 21.39
#> BMRKR2
#> LOW 50 45 40
#> MEDIUM 37 56 42
#> HIGH 47 33 50
#> COUNTRY
#> CHN 74 81 64
#> USA 10 13 17
#> BRA 13 7 10
#>
#>
#> ~~~~ PAGE BREAK ~~~~
#>
#> A: Drug X B: Placebo C: Combination
#> ———————————————————————————————————————————————————————————————————
#> COUNTRY
#> PAK 12 9 10
#> NGA 8 7 11
#> RUS 5 8 6
#> JPN 5 4 9
#> GBR 4 3 2
#> CAN 3 2 3
#> CHE 0 0 0
#>
#>
#> ~~~~ PAGE BREAK ~~~~
#>