Retrieve and assign elements of a TableTree
Usage
# S4 method for VTableTree,ANY,ANY,list
[(x, i, j, ...) <- value
# S4 method for VTableTree,logical,logical
[(x, i, j, ..., drop = FALSE)
Arguments
- x
(
TableTree
)
aTableTree
object.- i
(
numeric(1)
)
index.- j
(
numeric(1)
)
index.- ...
additional arguments. Includes:
keep_topleft
(
flag
) ([
only) whether the top-left material for the table should be retained after subsetting. Defaults toTRUE
if all rows are included (i.e. subsetting was by column), and drops it otherwise.keep_titles
(
flag
) whether title information should be retained. Defaults toFALSE
.keep_footers
(
flag
) whether non-referential footer information should be retained. Defaults tokeep_titles
.reindex_refs
(
flag
) whether referential footnotes should be re-indexed as if the resulting subset is the entire table. Defaults toTRUE
.
- value
(
list
,TableRow
, orTableTree
)
replacement value.- drop
(
flag
)
whether the value in the cell should be returned if one cell is selected by the combination ofi
andj
. It is not possible to return a vector of values. To do so please consider usingcell_values()
. Defaults toFALSE
.
Value
A TableTree
(or ElementaryTable
) object, unless a single cell was selected with drop = TRUE
, in which
case the (possibly multi-valued) fully stripped raw value of the selected cell.
Details
By default, subsetting drops the information about title, subtitle, main footer, provenance footer, and topleft
.
If only a column is selected and all rows are kept, the topleft
information remains as default. Any referential
footnote is kept whenever the subset table contains the referenced element.
Note
Subsetting always preserve the original order, even if provided indexes do not preserve it. If sorting is needed,
please consider using sort_at_path()
. Also note that character
indices are treated as paths, not vectors of
names in both [
and [<-
.
See also
sort_at_path()
to understand sorting.summarize_row_groups()
to understand path structure.
Examples
lyt <- basic_table(
title = "Title",
subtitles = c("Sub", "titles"),
prov_footer = "prov footer",
main_footer = "main footer"
) %>%
split_cols_by("ARM") %>%
split_rows_by("SEX") %>%
analyze(c("AGE"))
tbl <- build_table(lyt, DM)
top_left(tbl) <- "Info"
tbl
#> Title
#> Sub
#> titles
#>
#> ——————————————————————————————————————————————————————————
#> Info A: Drug X B: Placebo C: Combination
#> ——————————————————————————————————————————————————————————
#> F
#> Mean 33.71 33.84 34.89
#> M
#> Mean 36.55 32.10 34.28
#> U
#> Mean NA NA NA
#> UNDIFFERENTIATED
#> Mean NA NA NA
#> ——————————————————————————————————————————————————————————
#>
#> main footer
#>
#> prov footer
# As default header, footer, and topleft information is lost
tbl[1, ]
#> A: Drug X B: Placebo C: Combination
#> ———————————————————————————————————————————
#> F
tbl[1:2, 2]
#> B: Placebo
#> ———————————————————
#> F
#> Mean 33.84
# Also boolean filters can work
tbl[, c(FALSE, TRUE, FALSE)]
#> Note: method with signature ‘VTableTree#missing#ANY’ chosen for function ‘[’,
#> target signature ‘TableTree#missing#logical’.
#> "VTableTree#ANY#logical" would also be valid
#> Info B: Placebo
#> —————————————————————————————
#> F
#> Mean 33.84
#> M
#> Mean 32.10
#> U
#> Mean NA
#> UNDIFFERENTIATED
#> Mean NA
# If drop = TRUE, the content values are directly retrieved
tbl[2, 1]
#> A: Drug X
#> ————————————————
#> Mean 33.71
tbl[2, 1, drop = TRUE]
#> [1] 33.71429
# Drop works also if vectors are selected, but not matrices
tbl[, 1, drop = TRUE]
#> Warning: Trying to drop more than one subsetted value. We support this only with accessor function `cell_values()`. No drop will be done at this time.
#> Info A: Drug X
#> ————————————————————————————
#> F
#> Mean 33.71
#> M
#> Mean 36.55
#> U
#> Mean NA
#> UNDIFFERENTIATED
#> Mean NA
tbl[2, , drop = TRUE]
#> Warning: Trying to drop more than one subsetted value. We support this only with accessor function `cell_values()`. No drop will be done at this time.
#> A: Drug X B: Placebo C: Combination
#> ——————————————————————————————————————————————
#> Mean 33.71 33.84 34.89
tbl[1, 1, drop = TRUE] # NULL because it is a label row
#> Warning: The value selected with drop = TRUE belongs to a label row. NULL will be returned
#> NULL
tbl[2, 1:2, drop = TRUE] # vectors can be returned only with cell_values()
#> Warning: Trying to drop more than one subsetted value. We support this only with accessor function `cell_values()`. No drop will be done at this time.
#> A: Drug X B: Placebo
#> —————————————————————————————
#> Mean 33.71 33.84
tbl[1:2, 1:2, drop = TRUE] # no dropping because it is a matrix
#> Warning: Trying to drop more than one subsetted value. We support this only with accessor function `cell_values()`. No drop will be done at this time.
#> A: Drug X B: Placebo
#> ———————————————————————————————
#> F
#> Mean 33.71 33.84
# If all rows are selected, topleft is kept by default
tbl[, 2]
#> Info B: Placebo
#> —————————————————————————————
#> F
#> Mean 33.84
#> M
#> Mean 32.10
#> U
#> Mean NA
#> UNDIFFERENTIATED
#> Mean NA
tbl[, 1]
#> Info A: Drug X
#> ————————————————————————————
#> F
#> Mean 33.71
#> M
#> Mean 36.55
#> U
#> Mean NA
#> UNDIFFERENTIATED
#> Mean NA
# It is possible to deselect values
tbl[-2, ]
#> A: Drug X B: Placebo C: Combination
#> ——————————————————————————————————————————————————————————
#> F
#> M
#> Mean 36.55 32.10 34.28
#> U
#> Mean NA NA NA
#> UNDIFFERENTIATED
#> Mean NA NA NA
tbl[, -1]
#> Info B: Placebo C: Combination
#> ——————————————————————————————————————————————
#> F
#> Mean 33.84 34.89
#> M
#> Mean 32.10 34.28
#> U
#> Mean NA NA
#> UNDIFFERENTIATED
#> Mean NA NA
# Values can be reassigned
tbl[2, 1] <- rcell(999)
tbl[2, ] <- list(rrow("FFF", 888, 666, 777))
tbl[6, ] <- list(-111, -222, -333)
tbl
#> Title
#> Sub
#> titles
#>
#> ——————————————————————————————————————————————————————————
#> Info A: Drug X B: Placebo C: Combination
#> ——————————————————————————————————————————————————————————
#> F
#> FFF 888 666 777
#> M
#> Mean 36.55 32.10 34.28
#> U
#> Mean -111 -222 -333
#> UNDIFFERENTIATED
#> Mean NA NA NA
#> ——————————————————————————————————————————————————————————
#>
#> main footer
#>
#> prov footer
# We can keep some information from the original table if we need
tbl[1, 2, keep_titles = TRUE]
#> Title
#> Sub
#> titles
#>
#> ——————————————
#> B: Placebo
#> ——————————————
#> F
#> ——————————————
#>
#> main footer
#>
#> prov footer
tbl[1, 2, keep_footers = TRUE, keep_titles = FALSE]
#> B: Placebo
#> ——————————————
#> F
#> ——————————————
#>
#> main footer
#>
#> prov footer
tbl[1, 2, keep_footers = FALSE, keep_titles = TRUE]
#> Title
#> Sub
#> titles
#>
#> ——————————————
#> B: Placebo
#> ——————————————
#> F
tbl[1, 2, keep_footers = TRUE]
#> B: Placebo
#> ——————————————
#> F
#> ——————————————
#>
#> main footer
#>
#> prov footer
tbl[1, 2, keep_topleft = TRUE]
#> Info B: Placebo
#> —————————————————
#> F
# Keeps the referential footnotes when subset contains them
fnotes_at_path(tbl, rowpath = c("SEX", "M", "AGE", "Mean")) <- "important"
tbl[4, 1]
#> A: Drug X
#> ————————————————————
#> Mean {1} 36.55
#> ————————————————————
#>
#> {1} - important
#> ————————————————————
#>
tbl[2, 1] # None present
#> A: Drug X
#> ———————————————
#> FFF 888
# We can reindex referential footnotes, so that the new table does not depend
# on the original one
fnotes_at_path(tbl, rowpath = c("SEX", "U", "AGE", "Mean")) <- "important"
tbl[, 1] # both present
#> Info A: Drug X
#> ————————————————————————————
#> F
#> FFF 888
#> M
#> Mean {1} 36.55
#> U
#> Mean {1} -111
#> UNDIFFERENTIATED
#> Mean NA
#> ————————————————————————————
#>
#> {1} - important
#> ————————————————————————————
#>
tbl[5:6, 1] # {1} because it has been indexed again
#> A: Drug X
#> ——————————————————————
#> U
#> Mean {1} -111
#> ——————————————————————
#>
#> {1} - important
#> ——————————————————————
#>
tbl[5:6, 1, reindex_refs = FALSE] # {2} -> not reindexed
#> A: Drug X
#> ——————————————————————
#> U
#> Mean {1} -111
#> ——————————————————————
#>
#> {1} - important
#> ——————————————————————
#>
# Note that order can not be changed with subsetting
tbl[c(4, 3, 1), c(3, 1)] # It preserves order and wanted selection
#> A: Drug X C: Combination
#> ———————————————————————————————————————
#> F
#> M
#> Mean {1} 34.28 36.55
#> ———————————————————————————————————————
#>
#> {1} - important
#> ———————————————————————————————————————
#>