Create a custom analysis function wrapping an existing function
Source:R/tt_afun_utils.R
make_afun.RdCreate a custom analysis function wrapping an existing function
Arguments
- fun
(
function)
the function to be wrapped in a new customized analysis function.funshould return a namedlist.- .stats
(
character)
names of elements to keep fromfun's full output.- .formats
(
ANY)
vector or list of formats to override any defaults applied byfun.- .labels
(
character)
vector of labels to override defaults returned byfun.- .indent_mods
(
integer)
named vector of indent modifiers for the generated rows.- .ungroup_stats
(
character)
vector of names, which must match elements of.stats.- .format_na_strs
(
ANY)
vector/list ofNAstrings to override any defaults applied byfun.- ...
additional arguments to
funwhich effectively become new defaults. These can still be overridden byextra_argswithin a split.- .null_ref_cells
(
flag)
whether cells for the reference column should beNULL-ed by the returned analysis function. Defaults toTRUEiffunaccepts.in_ref_colas a formal argument. Note this argument occurs after...so it must be fully specified by name when set.
Value
A function suitable for use in analyze() with element selection, reformatting, and relabeling
performed automatically.
Note
Setting .ungroup_stats to non-NULL changes the structure of the value(s) returned by fun, rather than
just labeling (.labels), formatting (.formats), and selecting amongst (.stats) them. This means that
subsequent make_afun calls to customize the output further both can and must operate on the new structure,
not the original structure returned by fun. See the final pair of examples below.
Examples
s_summary <- function(x) {
stopifnot(is.numeric(x))
list(
n = sum(!is.na(x)),
mean_sd = c(mean = mean(x), sd = sd(x)),
min_max = range(x)
)
}
s_summary(iris$Sepal.Length)
#> $n
#> [1] 150
#>
#> $mean_sd
#> mean sd
#> 5.8433333 0.8280661
#>
#> $min_max
#> [1] 4.3 7.9
#>
a_summary <- make_afun(
fun = s_summary,
.formats = c(n = "xx", mean_sd = "xx.xx (xx.xx)", min_max = "xx.xx - xx.xx"),
.labels = c(n = "n", mean_sd = "Mean (sd)", min_max = "min - max")
)
a_summary(x = iris$Sepal.Length)
#> RowsVerticalSection (in_rows) object print method:
#> ----------------------------
#> row_name formatted_cell indent_mod row_label
#> 1 n 150 0 n
#> 2 mean_sd 5.84 (0.83) 0 Mean (sd)
#> 3 min_max 4.30 - 7.90 0 min - max
a_summary2 <- make_afun(a_summary, .stats = c("n", "mean_sd"))
a_summary2(x = iris$Sepal.Length)
#> RowsVerticalSection (in_rows) object print method:
#> ----------------------------
#> row_name formatted_cell indent_mod row_label
#> 1 n 150 0 n
#> 2 mean_sd 5.84 (0.83) 0 Mean (sd)
a_summary3 <- make_afun(a_summary, .formats = c(mean_sd = "(xx.xxx, xx.xxx)"))
s_foo <- function(df, .N_col, a = 1, b = 2) {
list(
nrow_df = nrow(df),
.N_col = .N_col,
a = a,
b = b
)
}
s_foo(iris, 40)
#> $nrow_df
#> [1] 150
#>
#> $.N_col
#> [1] 40
#>
#> $a
#> [1] 1
#>
#> $b
#> [1] 2
#>
a_foo <- make_afun(s_foo,
b = 4,
.formats = c(nrow_df = "xx.xx", ".N_col" = "xx.", a = "xx", b = "xx.x"),
.labels = c(
nrow_df = "Nrow df",
".N_col" = "n in cols", a = "a value", b = "b value"
),
.indent_mods = c(nrow_df = 2L, a = 1L)
)
a_foo(iris, .N_col = 40)
#> RowsVerticalSection (in_rows) object print method:
#> ----------------------------
#> row_name formatted_cell indent_mod row_label
#> 1 nrow_df 150.00 2 Nrow df
#> 2 .N_col 40 0 n in cols
#> 3 a 1 1 a value
#> 4 b 4.0 0 b value
a_foo2 <- make_afun(a_foo, .labels = c(nrow_df = "Number of Rows"))
a_foo2(iris, .N_col = 40)
#> RowsVerticalSection (in_rows) object print method:
#> ----------------------------
#> row_name formatted_cell indent_mod row_label
#> 1 nrow_df 150.00 2 Number of Rows
#> 2 .N_col 40 0 n in cols
#> 3 a 1 1 a value
#> 4 b 4.0 0 b value
# grouping and further customization
s_grp <- function(df, .N_col, a = 1, b = 2) {
list(
nrow_df = nrow(df),
.N_col = .N_col,
letters = list(
a = a,
b = b
)
)
}
a_grp <- make_afun(s_grp,
b = 3,
.labels = c(
nrow_df = "row count",
.N_col = "count in column"
),
.formats = c(nrow_df = "xx.", .N_col = "xx."),
.indent_mods = c(letters = 1L),
.ungroup_stats = "letters"
)
a_grp(iris, 40)
#> RowsVerticalSection (in_rows) object print method:
#> ----------------------------
#> row_name formatted_cell indent_mod row_label
#> 1 nrow_df 150 0 row count
#> 2 .N_col 40 0 count in column
#> 3 a 1 1 a
#> 4 b 3 1 b
a_aftergrp <- make_afun(a_grp,
.stats = c("nrow_df", "b"),
.formats = c(b = "xx.")
)
a_aftergrp(iris, 40)
#> RowsVerticalSection (in_rows) object print method:
#> ----------------------------
#> row_name formatted_cell indent_mod row_label
#> 1 nrow_df 150 0 row count
#> 2 b 3 0 b
s_ref <- function(x, .in_ref_col, .ref_group) {
list(
mean_diff = mean(x) - mean(.ref_group)
)
}
a_ref <- make_afun(s_ref,
.labels = c(mean_diff = "Mean Difference from Ref")
)
a_ref(iris$Sepal.Length, .in_ref_col = TRUE, 1:10)
#> RowsVerticalSection (in_rows) object print method:
#> ----------------------------
#> row_name formatted_cell indent_mod row_label
#> 1 mean_diff 0 Mean Difference from Ref
a_ref(iris$Sepal.Length, .in_ref_col = FALSE, 1:10)
#> RowsVerticalSection (in_rows) object print method:
#> ----------------------------
#> row_name formatted_cell indent_mod row_label
#> 1 mean_diff 0.343333333333334 0 Mean Difference from Ref