radcm.Rd
Function for generating random Concomitant Medication Analysis Dataset for a given Subject-Level Analysis Dataset.
Subject-Level Analysis Dataset (ADSL).
maximum number of concomitant medications per patient.
Data.frame containing additional parameters.
Seed for random number generation.
(numeric
) Default percentage of values to be replaced by NA
(list
) A named list where the name of each element is a column name of ds
. Each
element of this list should be a numeric vector with two elements
seed The seed to be used for this element - can be left NA
percentage How many element should be replaced. 0 is 0 % 1 is 100 %, can be left NA and default percentage is used. This will overwrite default percentage (percentage argument))
(`flag`)
whether to use WHO coding (with multiple paths per medication) or not.
boolean whether the cached ADCM data cadcm
should be returned or new data
should be generated. If set to TRUE
then the other arguments to radcm
will be ignored.
data.frame
One record per each record in the corresponding SDTM domain.
Keys: STUDYID USUBJID ASTDTM CMSEQ.
library(random.cdisc.data)
ADSL <- radsl(N = 10, seed = 1, study_duration = 2)
radcm(ADSL, seed = 2)
#> # A tibble: 50 × 68
#> STUDYID USUBJID SUBJID SITEID AGE AGEU SEX RACE ETHNIC COUNTRY DTHFL
#> <chr> <chr> <chr> <chr> <int> <fct> <fct> <fct> <fct> <fct> <fct>
#> 1 AB12345 AB12345-B… id-8 BRA-9 31 YEARS F ASIAN NOT H… BRA N
#> 2 AB12345 AB12345-B… id-8 BRA-9 31 YEARS F ASIAN NOT H… BRA N
#> 3 AB12345 AB12345-B… id-8 BRA-9 31 YEARS F ASIAN NOT H… BRA N
#> 4 AB12345 AB12345-B… id-8 BRA-9 31 YEARS F ASIAN NOT H… BRA N
#> 5 AB12345 AB12345-B… id-8 BRA-9 31 YEARS F ASIAN NOT H… BRA N
#> 6 AB12345 AB12345-B… id-8 BRA-9 31 YEARS F ASIAN NOT H… BRA N
#> 7 AB12345 AB12345-C… id-1 CHN-11 35 YEARS F WHITE UNKNO… CHN N
#> 8 AB12345 AB12345-C… id-1 CHN-11 35 YEARS F WHITE UNKNO… CHN N
#> 9 AB12345 AB12345-C… id-1 CHN-11 35 YEARS F WHITE UNKNO… CHN N
#> 10 AB12345 AB12345-C… id-1 CHN-11 35 YEARS F WHITE UNKNO… CHN N
#> # … with 40 more rows, and 57 more variables: INVID <chr>, INVNAM <chr>,
#> # ARM <fct>, ARMCD <fct>, ACTARM <fct>, ACTARMCD <fct>, TRT01P <fct>,
#> # TRT01A <fct>, REGION1 <fct>, STRATA1 <fct>, STRATA2 <fct>, BMRKR1 <dbl>,
#> # BMRKR2 <fct>, ITTFL <fct>, SAFFL <fct>, BMEASIFL <fct>, BEP01FL <fct>,
#> # RANDDT <date>, TRTSDTM <dttm>, TRTEDTM <dttm>, EOSSTT <fct>, EOTSTT <fct>,
#> # EOSDT <date>, EOSDY <int>, DCSREAS <fct>, DTHDT <date>, DTHCAUS <fct>,
#> # DTHCAT <fct>, LDDTHELD <int>, LDDTHGR1 <fct>, LSTALVDT <date>, …
radcm(ADSL, seed = 2, who_coding = TRUE)
#> # A tibble: 102 × 68
#> STUDYID USUBJID SUBJID SITEID AGE AGEU SEX RACE ETHNIC COUNTRY DTHFL
#> <chr> <chr> <chr> <chr> <int> <fct> <fct> <fct> <fct> <fct> <fct>
#> 1 AB12345 AB12345-B… id-8 BRA-9 31 YEARS F ASIAN NOT H… BRA N
#> 2 AB12345 AB12345-B… id-8 BRA-9 31 YEARS F ASIAN NOT H… BRA N
#> 3 AB12345 AB12345-B… id-8 BRA-9 31 YEARS F ASIAN NOT H… BRA N
#> 4 AB12345 AB12345-B… id-8 BRA-9 31 YEARS F ASIAN NOT H… BRA N
#> 5 AB12345 AB12345-B… id-8 BRA-9 31 YEARS F ASIAN NOT H… BRA N
#> 6 AB12345 AB12345-B… id-8 BRA-9 31 YEARS F ASIAN NOT H… BRA N
#> 7 AB12345 AB12345-C… id-1 CHN-11 35 YEARS F WHITE UNKNO… CHN N
#> 8 AB12345 AB12345-C… id-1 CHN-11 35 YEARS F WHITE UNKNO… CHN N
#> 9 AB12345 AB12345-C… id-1 CHN-11 35 YEARS F WHITE UNKNO… CHN N
#> 10 AB12345 AB12345-C… id-1 CHN-11 35 YEARS F WHITE UNKNO… CHN N
#> # … with 92 more rows, and 57 more variables: INVID <chr>, INVNAM <chr>,
#> # ARM <fct>, ARMCD <fct>, ACTARM <fct>, ACTARMCD <fct>, TRT01P <fct>,
#> # TRT01A <fct>, REGION1 <fct>, STRATA1 <fct>, STRATA2 <fct>, BMRKR1 <dbl>,
#> # BMRKR2 <fct>, ITTFL <fct>, SAFFL <fct>, BMEASIFL <fct>, BEP01FL <fct>,
#> # RANDDT <date>, TRTSDTM <dttm>, TRTEDTM <dttm>, EOSSTT <fct>, EOTSTT <fct>,
#> # EOSDT <date>, EOSDY <int>, DCSREAS <fct>, DTHDT <date>, DTHCAUS <fct>,
#> # DTHCAT <fct>, LDDTHELD <int>, LDDTHGR1 <fct>, LSTALVDT <date>, …