The Subject-Level Analysis Dataset (ADSL) is used to provide the variables that describe attributes of a subject. ADSL is a source for subject-level variables used in other analysis data sets, such as population flags and treatment variables. There is only one ADSL per study. ADSL and its related metadata are required in a CDISC-based submission of data from a clinical trial even if no other analysis data sets are submitted.
Arguments
- N
(
numeric
)
Number of patients.- study_duration
(
numeric
)
Duration of study in years.- seed
(
numeric
)
Seed to use for reproducible random number generation.- with_trt02
(
logical
)
Should period 2 be added.- na_percentage
(
proportion
)
Default percentage of values to be replaced byNA
.- na_vars
(
list
)
A named list where the name of each element is a column name ofds
. Each element of this list should be a numeric vector with two elements:seed
(numeric
)
The seed to be used for this element - can beNA
.percentage
(proportion
)
Percentage of elements to be replaced withNA
. IfNA
,na_percentage
is used as a default.
- ae_withdrawal_prob
(
proportion
)
Probability that there is at least one Adverse Event leading to the withdrawal of a study drug.- cached
boolean whether the cached ADSL data
cadsl
should be returned or new data should be generated. If set toTRUE
then the other arguments toradsl
will be ignored.
Examples
adsl <- radsl(N = 10, study_duration = 2, seed = 1)
adsl
#> # A tibble: 10 × 55
#> STUDYID USUBJID SUBJID SITEID AGE AGEU SEX RACE ETHNIC COUNTRY DTHFL
#> <chr> <chr> <chr> <chr> <int> <fct> <fct> <fct> <fct> <fct> <fct>
#> 1 AB12345 AB12345-C… id-10 CHN-3 35 YEARS M ASIAN NOT H… CHN N
#> 2 AB12345 AB12345-J… id-7 JPN-4 30 YEARS F ASIAN NOT H… JPN N
#> 3 AB12345 AB12345-U… id-3 USA-13 35 YEARS F AMER… NOT H… USA N
#> 4 AB12345 AB12345-B… id-8 BRA-9 31 YEARS F ASIAN NOT H… BRA Y
#> 5 AB12345 AB12345-C… id-2 CHN-11 35 YEARS M BLAC… NOT H… CHN N
#> 6 AB12345 AB12345-C… id-1 CHN-11 35 YEARS F WHITE NOT H… CHN Y
#> 7 AB12345 AB12345-C… id-5 CHN-3 36 YEARS F ASIAN NOT H… CHN N
#> 8 AB12345 AB12345-R… id-4 RUS-1 36 YEARS M BLAC… NOT H… RUS N
#> 9 AB12345 AB12345-R… id-6 RUS-1 36 YEARS F ASIAN NOT H… RUS N
#> 10 AB12345 AB12345-B… id-9 BRA-1 35 YEARS F BLAC… UNKNO… BRA N
#> # ℹ 44 more variables: INVID <chr>, INVNAM <chr>, ARM <fct>, ARMCD <fct>,
#> # ACTARM <fct>, ACTARMCD <fct>, TRT01P <fct>, TRT01A <fct>, TRT02P <fct>,
#> # TRT02A <fct>, REGION1 <fct>, STRATA1 <fct>, STRATA2 <fct>, BMRKR1 <dbl>,
#> # BMRKR2 <fct>, ITTFL <fct>, SAFFL <fct>, BMEASIFL <fct>, BEP01FL <fct>,
#> # AEWITHFL <fct>, RANDDT <date>, TRTSDTM <dttm>, TRTEDTM <dttm>,
#> # TRT01SDTM <dttm>, TRT01EDTM <dttm>, TRT02SDTM <dttm>, TRT02EDTM <dttm>,
#> # AP01SDTM <dttm>, AP01EDTM <dttm>, AP02SDTM <dttm>, AP02EDTM <dttm>, …
adsl <- radsl(
N = 10, seed = 1,
na_percentage = 0.1,
na_vars = list(
DTHDT = c(seed = 1234, percentage = 0.1),
LSTALVDT = c(seed = 1234, percentage = 0.1)
)
)
adsl
#> # A data frame: 10 × 55
#> STUDYID USUBJID SUBJID SITEID AGE AGEU SEX RACE ETHNIC COUNTRY DTHFL
#> <chr> <chr> <chr> <chr> <int> <fct> <fct> <fct> <fct> <fct> <fct>
#> 1 AB12345 AB12345-C… id-10 CHN-3 35 YEARS M ASIAN NOT H… CHN N
#> 2 AB12345 AB12345-J… id-7 JPN-4 30 YEARS F ASIAN NOT H… JPN N
#> 3 AB12345 AB12345-U… id-3 USA-13 35 YEARS F AMER… NOT H… USA N
#> 4 AB12345 AB12345-B… id-8 BRA-9 31 YEARS F ASIAN NOT H… BRA Y
#> 5 AB12345 AB12345-C… id-2 CHN-11 35 YEARS M BLAC… NOT H… CHN N
#> 6 AB12345 AB12345-C… id-1 CHN-11 35 YEARS F WHITE NOT H… CHN Y
#> 7 AB12345 AB12345-C… id-5 CHN-3 36 YEARS F ASIAN NOT H… CHN N
#> 8 AB12345 AB12345-R… id-4 RUS-1 36 YEARS M BLAC… NOT H… RUS N
#> 9 AB12345 AB12345-R… id-6 RUS-1 36 YEARS F ASIAN NOT H… RUS N
#> 10 AB12345 AB12345-B… id-9 BRA-1 35 YEARS F BLAC… UNKNO… BRA N
#> # ℹ 44 more variables: INVID <chr>, INVNAM <chr>, ARM <fct>, ARMCD <fct>,
#> # ACTARM <fct>, ACTARMCD <fct>, TRT01P <fct>, TRT01A <fct>, TRT02P <fct>,
#> # TRT02A <fct>, REGION1 <fct>, STRATA1 <fct>, STRATA2 <fct>, BMRKR1 <dbl>,
#> # BMRKR2 <fct>, ITTFL <fct>, SAFFL <fct>, BMEASIFL <fct>, BEP01FL <fct>,
#> # AEWITHFL <fct>, RANDDT <date>, TRTSDTM <dttm>, TRTEDTM <dttm>,
#> # TRT01SDTM <dttm>, TRT01EDTM <dttm>, TRT02SDTM <dttm>, TRT02EDTM <dttm>,
#> # AP01SDTM <dttm>, AP01EDTM <dttm>, AP02SDTM <dttm>, AP02EDTM <dttm>, …
adsl <- radsl(N = 10, seed = 1, na_percentage = .1)
adsl
#> # A data frame: 10 × 55
#> STUDYID USUBJID SUBJID SITEID AGE AGEU SEX RACE ETHNIC COUNTRY DTHFL
#> <chr> <chr> <chr> <chr> <int> <fct> <fct> <fct> <fct> <fct> <fct>
#> 1 AB12345 AB12345-C… id-10 CHN-3 NA YEARS M NA NOT H… CHN N
#> 2 AB12345 AB12345-J… id-7 JPN-4 30 YEARS NA ASIAN NOT H… JPN N
#> 3 AB12345 AB12345-U… id-3 USA-13 35 YEARS F AMER… NOT H… USA N
#> 4 AB12345 AB12345-B… id-8 BRA-9 31 YEARS F ASIAN NOT H… BRA Y
#> 5 AB12345 AB12345-C… id-2 CHN-11 35 YEARS M BLAC… NOT H… CHN N
#> 6 AB12345 AB12345-C… id-1 CHN-11 35 YEARS F WHITE NOT H… CHN Y
#> 7 AB12345 AB12345-C… id-5 CHN-3 36 YEARS F ASIAN NOT H… CHN N
#> 8 AB12345 AB12345-R… id-4 RUS-1 36 YEARS M BLAC… NOT H… RUS N
#> 9 AB12345 AB12345-R… id-6 RUS-1 36 YEARS F ASIAN NOT H… RUS N
#> 10 AB12345 AB12345-B… id-9 BRA-1 35 YEARS F BLAC… UNKNO… BRA N
#> # ℹ 44 more variables: INVID <chr>, INVNAM <chr>, ARM <fct>, ARMCD <fct>,
#> # ACTARM <fct>, ACTARMCD <fct>, TRT01P <fct>, TRT01A <fct>, TRT02P <fct>,
#> # TRT02A <fct>, REGION1 <fct>, STRATA1 <fct>, STRATA2 <fct>, BMRKR1 <dbl>,
#> # BMRKR2 <fct>, ITTFL <fct>, SAFFL <fct>, BMEASIFL <fct>, BEP01FL <fct>,
#> # AEWITHFL <fct>, RANDDT <date>, TRTSDTM <dttm>, TRTEDTM <dttm>,
#> # TRT01SDTM <dttm>, TRT01EDTM <dttm>, TRT02SDTM <dttm>, TRT02EDTM <dttm>,
#> # AP01SDTM <dttm>, AP01EDTM <dttm>, AP02SDTM <dttm>, AP02EDTM <dttm>, …