draw_scatterplot(
object,
assay_name,
x_spec,
y_spec,
color_var = NULL,
facet_var = NULL,
smooth_method = c("lm", "loess", "none")
)
(AnyHermesData
)
input.
(string
)
selects assay from input.
(GeneSpec
)
gene specification for the x-axis.
(GeneSpec
)
gene specification for the y-axis.
(string
or NULL
)
optional color variable, taken
from input sample variables.
(string
or NULL
)
optional faceting variable, taken
from input sample variables.
(string
)
smoothing method to use, either linear
regression line (lm
), local polynomial regression (loess
) or none
.
The ggplot
scatterplot.
object <- hermes_data
g <- genes(object)
draw_scatterplot(
object,
assay_name = "counts",
facet_var = NULL,
x_spec = gene_spec(c(A = g[1])),
y_spec = gene_spec(g[2]),
color = "RACE"
)
object2 <- object %>%
add_quality_flags() %>%
filter() %>%
normalize()
g2 <- genes(object2)
draw_scatterplot(
object2,
assay_name = "tpm",
facet_var = "SEX",
x_spec = gene_spec(g2[1:10], colMeans, "Mean"),
y_spec = gene_spec(g2[11:20], colMedians, "Median"),
smooth_method = "loess"
)