This helper function returns the first principal component from an assay
stored as a matrix
.
Usage
colPrinComp1(x, center = TRUE, scale = TRUE)
Arguments
- x
(matrix
)
containing numeric data with genes in rows and samples
in columns, no missing values are allowed.
- center
(flag
)
whether the variables should be zero centered.
- scale
(flag
)
whether the variables should be scaled to have unit variance.
Value
A numeric vector containing the principal component values for each
column in x
.
Examples
object <- hermes_data %>%
add_quality_flags() %>%
filter() %>%
normalize() %>%
assay("counts")
colPrinComp1(object)
#> 06520011B0023R 06520067C0018R 06520063C0043R 06520105C0017R 06520092C0017R
#> -22.7211514 -16.5888471 -8.6643020 -20.3183592 13.4998779
#> 06520103C0017R 06520001B0023R 06520022C0017R 06520062C0017R 06520101B0017R
#> 17.9491775 4.7633163 -10.6928704 -16.1907212 30.3749930
#> 06520047C0017R 06520024B0014R 06520080B0023R 06520093C0017R 06520070C0018R
#> -25.6029134 -18.1914202 -6.9932017 36.8659028 0.7099287
#> 06520023C0018R 06520099B0017R 06520015C0016R 06520019C0023R
#> -5.3048871 32.7696234 9.9885728 4.3472814