| 1 |
#' Helper for Common Kaplan-Meier Computations |
|
| 2 |
#' |
|
| 3 |
#' @param data (`data.frame`)\cr with `time` and `status` numeric columns. |
|
| 4 |
#' @returns The [survival::survfit()] result as basis of |
|
| 5 |
#' the Kaplan-Meier estimate. |
|
| 6 |
#' |
|
| 7 |
#' @keywords internal |
|
| 8 |
h_surv_fit <- function(data) {
|
|
| 9 | 14x |
assert_data_frame(data) |
| 10 | 14x |
assert_subset(c("time", "status"), names(data))
|
| 11 | 14x |
assert_numeric(data$status) |
| 12 | 14x |
assert_numeric(data$time) |
| 13 | ||
| 14 | 14x |
surv_fit <- survival::survfit( |
| 15 | 14x |
survival::Surv(data$time, data$status) ~ 1, |
| 16 | 14x |
se.fit = FALSE, |
| 17 | 14x |
stype = 1, |
| 18 | 14x |
ctype = 1 |
| 19 |
) |
|
| 20 | 14x |
assert_numeric(surv_fit$surv) |
| 21 | 14x |
surv_fit |
| 22 |
} |
|
| 23 | ||
| 24 |
#' Helper for `stat_km` |
|
| 25 |
#' |
|
| 26 |
#' @inheritParams h_surv_fit |
|
| 27 |
#' @param scales not used. |
|
| 28 |
#' @returns A `data.frame` with `time` and `survival` columns. |
|
| 29 |
#' |
|
| 30 |
#' @keywords internal |
|
| 31 |
stat_km_compute <- function(data, scales) {
|
|
| 32 | 1x |
surv_fit <- h_surv_fit(data) |
| 33 | 1x |
first <- c(0, 1) |
| 34 | 1x |
data.frame( |
| 35 | 1x |
time = c(first[1], surv_fit$time), |
| 36 | 1x |
survival = c(first[2], surv_fit$surv) |
| 37 |
) |
|
| 38 |
} |
|
| 39 | ||
| 40 |
#' Helper for `stat_km_ticks` |
|
| 41 |
#' |
|
| 42 |
#' @inheritParams stat_km_compute |
|
| 43 |
#' @returns A `data.frame` with `time`, `survival`, `n.risk`, `n.censor` and `n.event` |
|
| 44 |
#' columns. |
|
| 45 |
#' |
|
| 46 |
#' @keywords internal |
|
| 47 |
stat_km_ticks_compute <- function(data, scales) {
|
|
| 48 | 1x |
surv_fit <- h_surv_fit(data) |
| 49 | 1x |
data.frame( |
| 50 | 1x |
time = surv_fit$time, |
| 51 | 1x |
survival = surv_fit$surv, |
| 52 | 1x |
n.risk = surv_fit$n.risk, |
| 53 | 1x |
n.censor = surv_fit$n.censor, |
| 54 | 1x |
n.event = surv_fit$n.event |
| 55 |
) |
|
| 56 |
} |
| 1 |
#' Add a Kaplan-Meier Survival Curve |
|
| 2 |
#' |
|
| 3 |
#' @description `r lifecycle::badge("experimental")`
|
|
| 4 |
#' Adds the Kaplan-Meier survival curve. |
|
| 5 |
#' |
|
| 6 |
#' @inheritParams ggplot2::geom_step |
|
| 7 |
#' |
|
| 8 |
#' @section Aesthetics: |
|
| 9 |
#' `geom_km()` understands the following aesthetics (required aesthetics in bold): |
|
| 10 |
#' |
|
| 11 |
#' - **`x`**: the survival/censoring times, automatically mapped by [stat_km()]. |
|
| 12 |
#' - **`y`**: the survival probability estimates, automatically mapped by [stat_km()]. |
|
| 13 |
#' - `alpha` |
|
| 14 |
#' - `color` |
|
| 15 |
#' - `linetype` |
|
| 16 |
#' - `linewidth` |
|
| 17 |
#' |
|
| 18 |
#' @seealso The default `stat` for this `geom` is [stat_km()]. |
|
| 19 |
#' |
|
| 20 |
#' @author Inspired by `geom_km` written by Michael Sachs (in `ggkm`) and |
|
| 21 |
#' Samer Mouksassi (in `ggquickeda`). Here we directly use [ggplot2::geom_step()] |
|
| 22 |
#' instead of the more general [ggplot2::geom_path()]. |
|
| 23 |
#' @export |
|
| 24 |
#' @examples |
|
| 25 |
#' library(ggplot2) |
|
| 26 |
#' sex <- rbinom(250, 1, .5) |
|
| 27 |
#' df <- data.frame( |
|
| 28 |
#' time = exp(rnorm(250, mean = sex)), |
|
| 29 |
#' status = rbinom(250, 1, .75), |
|
| 30 |
#' sex = sex |
|
| 31 |
#' ) |
|
| 32 |
#' ggplot(df, aes(time = time, status = status, color = factor(sex))) + |
|
| 33 |
#' geom_km() |
|
| 34 |
geom_km <- function(mapping = NULL, |
|
| 35 |
data = NULL, |
|
| 36 |
stat = "km", |
|
| 37 |
position = "identity", |
|
| 38 |
show.legend = NA, |
|
| 39 |
inherit.aes = TRUE, |
|
| 40 |
na.rm = TRUE, |
|
| 41 |
...) {
|
|
| 42 | 3x |
ggplot2::layer( |
| 43 | 3x |
geom = GeomKm, |
| 44 | 3x |
mapping = mapping, |
| 45 | 3x |
data = data, |
| 46 | 3x |
stat = stat, |
| 47 | 3x |
position = position, |
| 48 | 3x |
show.legend = show.legend, |
| 49 | 3x |
inherit.aes = inherit.aes, |
| 50 | 3x |
params = list(na.rm = na.rm, ...) |
| 51 |
) |
|
| 52 |
} |
|
| 53 | ||
| 54 |
# GeomKm ---- |
|
| 55 | ||
| 56 |
#' @rdname ggproto |
|
| 57 |
#' @export |
|
| 58 |
GeomKm <- ggplot2::ggproto( |
|
| 59 |
"GeomKm", |
|
| 60 |
ggplot2::GeomStep, |
|
| 61 |
draw_group = function(data, scales, coordinates, ...) {
|
|
| 62 |
path <- transform(data, alpha = NA) |
|
| 63 |
ggplot2::GeomStep$draw_panel(path, scales, coordinates, direction = "hv") |
|
| 64 |
}, |
|
| 65 |
required_aes = c("x", "y"),
|
|
| 66 |
default_aes = ggplot2::aes( |
|
| 67 |
colour = "black", |
|
| 68 |
fill = "grey60", |
|
| 69 |
linewidth = 0.75, |
|
| 70 |
linetype = 1, |
|
| 71 |
weight = 1, |
|
| 72 |
alpha = 1 |
|
| 73 |
) |
|
| 74 |
) |
| 1 |
#' @include stat_km_compute.R |
|
| 2 |
NULL |
|
| 3 | ||
| 4 |
#' Adds a Kaplan-Meier Estimate of Survival Statistic |
|
| 5 |
#' |
|
| 6 |
#' @description `r lifecycle::badge("experimental")`
|
|
| 7 |
#' This `stat` is for computing the Kaplan-Meier survival estimate for |
|
| 8 |
#' right-censored data. It requires the aesthetic mapping `time` for the |
|
| 9 |
#' observation times and `status` which indicates the event status, |
|
| 10 |
#' either 0 for alive and 1 for dead, or 1 for alive and 2 for dead. |
|
| 11 |
#' |
|
| 12 |
#' @note Logical `status` is not supported. |
|
| 13 |
#' |
|
| 14 |
#' @inheritParams ggplot2::stat_identity |
|
| 15 |
#' |
|
| 16 |
#' @returns A `data.frame` with columns: |
|
| 17 |
#' - `time`: `time` in `data`. |
|
| 18 |
#' - `survival`: survival estimate at `time`. |
|
| 19 |
#' |
|
| 20 |
#' @author Michael Sachs (in `ggkm`), Samer Mouksassi (in `ggquickeda`). |
|
| 21 |
#' @export |
|
| 22 |
#' @examples |
|
| 23 |
#' library(ggplot2) |
|
| 24 |
#' sex <- rbinom(250, 1, .5) |
|
| 25 |
#' df <- data.frame( |
|
| 26 |
#' time = exp(rnorm(250, mean = sex)), |
|
| 27 |
#' status = rbinom(250, 1, .75), |
|
| 28 |
#' sex = sex |
|
| 29 |
#' ) |
|
| 30 |
#' ggplot(df, aes(time = time, status = status, color = factor(sex))) + |
|
| 31 |
#' stat_km() |
|
| 32 |
stat_km <- function(mapping = NULL, |
|
| 33 |
data = NULL, |
|
| 34 |
geom = "km", |
|
| 35 |
position = "identity", |
|
| 36 |
show.legend = NA, |
|
| 37 |
inherit.aes = TRUE, |
|
| 38 |
...) {
|
|
| 39 | 1x |
ggplot2::layer( |
| 40 | 1x |
stat = StatKm, |
| 41 | 1x |
data = data, |
| 42 | 1x |
mapping = mapping, |
| 43 | 1x |
geom = geom, |
| 44 | 1x |
position = position, |
| 45 | 1x |
show.legend = show.legend, |
| 46 | 1x |
inherit.aes = inherit.aes, |
| 47 | 1x |
params = list(...) |
| 48 |
) |
|
| 49 |
} |
|
| 50 | ||
| 51 |
#' @rdname ggproto |
|
| 52 |
#' @export |
|
| 53 |
StatKm <- ggplot2::ggproto( |
|
| 54 |
"StatKm", |
|
| 55 |
ggplot2::Stat, |
|
| 56 |
compute_group = stat_km_compute, |
|
| 57 |
default_aes = ggplot2::aes(y = ..survival.., x = ..time..), |
|
| 58 |
required_aes = c("time", "status"),
|
|
| 59 |
dropped_aes = "status" |
|
| 60 |
) |
| 1 |
#' @include stat_km_compute.R |
|
| 2 |
NULL |
|
| 3 | ||
| 4 |
#' Adds Tick Marks to a Kaplan-Meier Estimate of Survival Statistic |
|
| 5 |
#' |
|
| 6 |
#' @description `r lifecycle::badge("experimental")`
|
|
| 7 |
#' This `stat` is for computing the location of the tick marks for the |
|
| 8 |
#' Kaplan-Meier survival estimate for right-censored data. |
|
| 9 |
#' It requires the aesthetic mapping `time` for the |
|
| 10 |
#' observation times and `status` which indicates the event status, |
|
| 11 |
#' either 0 for alive and 1 for dead, or 1 for alive and 2 for dead. |
|
| 12 |
#' |
|
| 13 |
#' @note Logical `status` is not supported. |
|
| 14 |
#' |
|
| 15 |
#' @inheritParams ggplot2::stat_identity |
|
| 16 |
#' @inheritParams stat_km |
|
| 17 |
#' |
|
| 18 |
#' @returns A `data.frame` with columns: |
|
| 19 |
#' - `time`: `time` in `data`. |
|
| 20 |
#' - `survival`: survival estimate at `time`. |
|
| 21 |
#' - `n.risk`: number of patients at risk. |
|
| 22 |
#' - `n.censor`: number of patients censored. |
|
| 23 |
#' - `n.event`: number of patients with event. |
|
| 24 |
#' |
|
| 25 |
#' @author Michael Sachs (in `ggkm`), Samer Mouksassi (in `ggquickeda`). |
|
| 26 |
#' @export |
|
| 27 |
#' @examples |
|
| 28 |
#' library(ggplot2) |
|
| 29 |
#' sex <- rbinom(250, 1, .5) |
|
| 30 |
#' df <- data.frame( |
|
| 31 |
#' time = exp(rnorm(250, mean = sex)), |
|
| 32 |
#' status = rbinom(250, 1, .75), |
|
| 33 |
#' sex = sex |
|
| 34 |
#' ) |
|
| 35 |
#' ggplot(df, aes(time = time, status = status, color = factor(sex))) + |
|
| 36 |
#' stat_km() + |
|
| 37 |
#' stat_km_ticks() |
|
| 38 |
stat_km_ticks <- function(mapping = NULL, |
|
| 39 |
data = NULL, |
|
| 40 |
geom = "km_ticks", |
|
| 41 |
position = "identity", |
|
| 42 |
show.legend = NA, |
|
| 43 |
inherit.aes = TRUE, |
|
| 44 |
...) {
|
|
| 45 | 1x |
ggplot2::layer( |
| 46 | 1x |
stat = StatKmTicks, |
| 47 | 1x |
data = data, |
| 48 | 1x |
mapping = mapping, |
| 49 | 1x |
geom = geom, |
| 50 | 1x |
position = position, |
| 51 | 1x |
show.legend = show.legend, |
| 52 | 1x |
inherit.aes = inherit.aes, |
| 53 | 1x |
params = list(...) |
| 54 |
) |
|
| 55 |
} |
|
| 56 | ||
| 57 |
#' @rdname ggproto |
|
| 58 |
#' @export |
|
| 59 |
StatKmTicks <- ggplot2::ggproto( |
|
| 60 |
"StatKmTicks", |
|
| 61 |
ggplot2::Stat, |
|
| 62 |
compute_group = stat_km_ticks_compute, |
|
| 63 |
default_aes = ggplot2::aes(y = ..survival.., x = ..time..), |
|
| 64 |
required_aes = c("time", "status"),
|
|
| 65 |
dropped_aes = "status" |
|
| 66 |
) |
| 1 |
#' Add Tick Marks to a Kaplan-Meier Survival Curve |
|
| 2 |
#' |
|
| 3 |
#' @description `r lifecycle::badge("experimental")`
|
|
| 4 |
#' Adds tickmarks at the times when there are censored observations but no |
|
| 5 |
#' events. |
|
| 6 |
#' |
|
| 7 |
#' @inheritParams ggplot2::geom_point |
|
| 8 |
#' |
|
| 9 |
#' @section Aesthetics: |
|
| 10 |
#' `geom_km_ticks()` understands the following aesthetics (required aesthetics in bold): |
|
| 11 |
#' |
|
| 12 |
#' - **`x`**: the survival/censoring times, automatically mapped by [stat_km_ticks()]. |
|
| 13 |
#' - **`y`**: the survival probability estimates, automatically mapped by [stat_km_ticks()]. |
|
| 14 |
#' - `alpha` |
|
| 15 |
#' - `color` |
|
| 16 |
#' - `shape` |
|
| 17 |
#' - `size` |
|
| 18 |
#' - `stroke` |
|
| 19 |
#' - `fill` |
|
| 20 |
#' |
|
| 21 |
#' @seealso The default `stat` for this `geom` is [stat_km_ticks()]. |
|
| 22 |
#' |
|
| 23 |
#' @author Michael Sachs (in `ggkm`), Samer Mouksassi (in `ggquickeda`). |
|
| 24 |
#' @export |
|
| 25 |
#' @examples |
|
| 26 |
#' library(ggplot2) |
|
| 27 |
#' sex <- rbinom(250, 1, .5) |
|
| 28 |
#' df <- data.frame( |
|
| 29 |
#' time = exp(rnorm(250, mean = sex)), |
|
| 30 |
#' status = rbinom(250, 1, .75), |
|
| 31 |
#' sex = sex |
|
| 32 |
#' ) |
|
| 33 |
#' ggplot(df, aes(time = time, status = status, color = factor(sex), group = factor(sex))) + |
|
| 34 |
#' geom_km() + |
|
| 35 |
#' geom_km_ticks(col = "black") |
|
| 36 |
geom_km_ticks <- function(mapping = NULL, |
|
| 37 |
data = NULL, |
|
| 38 |
stat = "km_ticks", |
|
| 39 |
position = "identity", |
|
| 40 |
show.legend = NA, |
|
| 41 |
inherit.aes = TRUE, |
|
| 42 |
na.rm = TRUE, |
|
| 43 |
...) {
|
|
| 44 | 3x |
ggplot2::layer( |
| 45 | 3x |
geom = GeomKmTicks, |
| 46 | 3x |
mapping = mapping, |
| 47 | 3x |
data = data, |
| 48 | 3x |
stat = stat, |
| 49 | 3x |
position = position, |
| 50 | 3x |
show.legend = show.legend, |
| 51 | 3x |
inherit.aes = inherit.aes, |
| 52 | 3x |
params = list(na.rm = na.rm, ...) |
| 53 |
) |
|
| 54 |
} |
|
| 55 | ||
| 56 |
# GeomKmTicks ---- |
|
| 57 | ||
| 58 |
#' @rdname ggproto |
|
| 59 |
#' @export |
|
| 60 |
GeomKmTicks <- ggplot2::ggproto( |
|
| 61 |
"GeomKmTicks", |
|
| 62 |
ggplot2::Geom, |
|
| 63 |
draw_group = function(data, scales, coordinates, ...) {
|
|
| 64 |
showpoints <- data$n.censor > 0 & data$n.event == 0 |
|
| 65 |
coordsp <- coordinates$transform(data, scales)[showpoints, , drop = FALSE] |
|
| 66 |
if (nrow(coordsp) == 0) {
|
|
| 67 |
grid::nullGrob() |
|
| 68 |
} else {
|
|
| 69 |
grid::pointsGrob( |
|
| 70 |
coordsp$x, |
|
| 71 |
coordsp$y, |
|
| 72 |
pch = coordsp$shape, |
|
| 73 |
size = grid::unit(coordsp$size, "char"), |
|
| 74 |
gp = grid::gpar( |
|
| 75 |
col = coordsp$colour, |
|
| 76 |
fill = coordsp$fill, |
|
| 77 |
alpha = coordsp$alpha |
|
| 78 |
) |
|
| 79 |
) |
|
| 80 |
} |
|
| 81 |
}, |
|
| 82 |
required_aes = c("x", "y"),
|
|
| 83 |
non_missing_aes = c("size", "shape"),
|
|
| 84 |
default_aes = ggplot2::aes( |
|
| 85 |
shape = 3, |
|
| 86 |
colour = "black", |
|
| 87 |
size = .75, |
|
| 88 |
alpha = 1, |
|
| 89 |
stroke = 0.5, |
|
| 90 |
fill = "black" |
|
| 91 |
), |
|
| 92 |
draw_key = ggplot2::draw_key_point |
|
| 93 |
) |