Useful functions for writing tests and examples, and a starting point for
more sophisticated custom matrix_form
methods.
Arguments
- df
(
data.frame
)
a data frame.- indent_rownames
(
flag
)
whether row names should be indented. Being this used for testing purposes, it defaults toFALSE
. IfTRUE
, it assigns label rows on even lines (also format is"-"
and value strings are""
). Indentation works only if split labels are used (see parameterssplit_labels
anddata_labels
).- parent_path
(
string
)
parent path that all rows should be "children of". Defaults toNULL
, as usually this is not needed. It may be necessary to use"root"
, for some specific scenarios.- ignore_rownames
(
flag
)
whether row names should be ignored.- add_decoration
(
flag
)
whether adds title and footer decorations should be added to the matrix form.- fontspec
(
font_spec
)
a font_spec object specifying the font information to use for calculating string widths and heights, as returned byfont_spec()
.- split_labels
(
string
)
indicates which column to use as split labels. IfNULL
, no split labels are used.- data_labels
(
string
)
indicates which column to use as data labels. It is ignored if nosplit_labels
is present and is automatically assigned to"Analysis method"
whensplit_labels
is present, butdata_labels
isNULL
. Its direct column name is used as node name in"DataRow"
pathing. Seemf_rinfo()
for more information.- num_rep_cols
(
numeric(1)
)
Number of columns to be treated as repeating columns. Defaults to0
forbasic_matrix_form
andlength(keycols)
forbasic_listing_mf
. Note repeating columns are separate from row labels if present.- keycols
(
character
)
a vector ofdf
column names that are printed first and for which repeated values are assigned""
. This format is characteristic of a listing matrix form.
Value
A valid MatrixPrintForm
object representing df
that is ready for
ASCII rendering.
A valid MatrixPrintForm
object representing df
as a listing that is ready for ASCII
rendering.
Details
If some of the column has a obj_format assigned, it will be respected for all column
values except for label rows, if present (see parameter split_labels
).
Functions
basic_listing_mf()
: Create aMatrixPrintForm
object from data framedf
that respects the default formats for a listing object.
Examples
mform <- basic_matrix_form(mtcars)
cat(toString(mform))
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
#> Mazda RX4 21 6 160 110 3.9 2.62 16.46 0 1 4 4
#> Mazda RX4 Wag 21 6 160 110 3.9 2.875 17.02 0 1 4 4
#> Datsun 710 22.8 4 108 93 3.85 2.32 18.61 1 1 4 1
#> Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
#> Hornet Sportabout 18.7 8 360 175 3.15 3.44 17.02 0 0 3 2
#> Valiant 18.1 6 225 105 2.76 3.46 20.22 1 0 3 1
#> Duster 360 14.3 8 360 245 3.21 3.57 15.84 0 0 3 4
#> Merc 240D 24.4 4 146.7 62 3.69 3.19 20 1 0 4 2
#> Merc 230 22.8 4 140.8 95 3.92 3.15 22.9 1 0 4 2
#> Merc 280 19.2 6 167.6 123 3.92 3.44 18.3 1 0 4 4
#> Merc 280C 17.8 6 167.6 123 3.92 3.44 18.9 1 0 4 4
#> Merc 450SE 16.4 8 275.8 180 3.07 4.07 17.4 0 0 3 3
#> Merc 450SL 17.3 8 275.8 180 3.07 3.73 17.6 0 0 3 3
#> Merc 450SLC 15.2 8 275.8 180 3.07 3.78 18 0 0 3 3
#> Cadillac Fleetwood 10.4 8 472 205 2.93 5.25 17.98 0 0 3 4
#> Lincoln Continental 10.4 8 460 215 3 5.424 17.82 0 0 3 4
#> Chrysler Imperial 14.7 8 440 230 3.23 5.345 17.42 0 0 3 4
#> Fiat 128 32.4 4 78.7 66 4.08 2.2 19.47 1 1 4 1
#> Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.9 1 1 4 1
#> Toyota Corona 21.5 4 120.1 97 3.7 2.465 20.01 1 0 3 1
#> Dodge Challenger 15.5 8 318 150 2.76 3.52 16.87 0 0 3 2
#> AMC Javelin 15.2 8 304 150 3.15 3.435 17.3 0 0 3 2
#> Camaro Z28 13.3 8 350 245 3.73 3.84 15.41 0 0 3 4
#> Pontiac Firebird 19.2 8 400 175 3.08 3.845 17.05 0 0 3 2
#> Fiat X1-9 27.3 4 79 66 4.08 1.935 18.9 1 1 4 1
#> Porsche 914-2 26 4 120.3 91 4.43 2.14 16.7 0 1 5 2
#> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.9 1 1 5 2
#> Ford Pantera L 15.8 8 351 264 4.22 3.17 14.5 0 1 5 4
#> Ferrari Dino 19.7 6 145 175 3.62 2.77 15.5 0 1 5 6
#> Maserati Bora 15 8 301 335 3.54 3.57 14.6 0 1 5 8
#> Volvo 142E 21.4 4 121 109 4.11 2.78 18.6 1 1 4 2
# Advanced test case with label rows
library(dplyr)
iris_output <- iris %>%
group_by(Species) %>%
summarize("all obs" = round(mean(Petal.Length), 2)) %>%
mutate("DataRow_label" = "Mean")
mf <- basic_matrix_form(iris_output,
indent_rownames = TRUE,
split_labels = "Species", data_labels = "DataRow_label"
)
cat(toString(mf))
#> all obs
#> oooooooooooooooooooo
#> setosa
#> Mean 1.46
#> versicolor
#> Mean 4.26
#> virginica
#> Mean 5.55
mform <- basic_listing_mf(mtcars)
cat(toString(mform))
#> main title
#> sub
#> titles
#>
#> ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
#> 10.4 8 472 205 2.93 5.25 17.98 0 0 3 4
#> 8 460 215 3 5.424 17.82 0 0 3 4
#> 13.3 8 350 245 3.73 3.84 15.41 0 0 3 4
#> 14.3 8 360 245 3.21 3.57 15.84 0 0 3 4
#> 14.7 8 440 230 3.23 5.345 17.42 0 0 3 4
#> 15 8 301 335 3.54 3.57 14.6 0 1 5 8
#> 15.2 8 275.8 180 3.07 3.78 18 0 0 3 3
#> 8 304 150 3.15 3.435 17.3 0 0 3 2
#> 15.5 8 318 150 2.76 3.52 16.87 0 0 3 2
#> 15.8 8 351 264 4.22 3.17 14.5 0 1 5 4
#> 16.4 8 275.8 180 3.07 4.07 17.4 0 0 3 3
#> 17.3 8 275.8 180 3.07 3.73 17.6 0 0 3 3
#> 17.8 6 167.6 123 3.92 3.44 18.9 1 0 4 4
#> 18.1 6 225 105 2.76 3.46 20.22 1 0 3 1
#> 18.7 8 360 175 3.15 3.44 17.02 0 0 3 2
#> 19.2 6 167.6 123 3.92 3.44 18.3 1 0 4 4
#> 8 400 175 3.08 3.845 17.05 0 0 3 2
#> 19.7 6 145 175 3.62 2.77 15.5 0 1 5 6
#> 21 6 160 110 3.9 2.62 16.46 0 1 4 4
#> 6 160 110 3.9 2.875 17.02 0 1 4 4
#> 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
#> 4 121 109 4.11 2.78 18.6 1 1 4 2
#> 21.5 4 120.1 97 3.7 2.465 20.01 1 0 3 1
#> 22.8 4 108 93 3.85 2.32 18.61 1 1 4 1
#> 4 140.8 95 3.92 3.15 22.9 1 0 4 2
#> 24.4 4 146.7 62 3.69 3.19 20 1 0 4 2
#> 26 4 120.3 91 4.43 2.14 16.7 0 1 5 2
#> 27.3 4 79 66 4.08 1.935 18.9 1 1 4 1
#> 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
#> 4 95.1 113 3.77 1.513 16.9 1 1 5 2
#> 32.4 4 78.7 66 4.08 2.2 19.47 1 1 4 1
#> 33.9 4 71.1 65 4.22 1.835 19.9 1 1 4 1
#> ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
#>
#> main
#> footer
#>
#> prov footer