A function that takes a regression model and provides basic statistics in an
ARD structure.
The default output is simpler than ard_regression()
.
The function primarily matches regression terms to underlying variable names
and levels.
The default arguments used are
broom.helpers::tidy_plus_plus(
add_reference_rows = FALSE,
add_estimate_to_reference_rows = FALSE,
add_n = FALSE,
intercept = FALSE
)
Usage
ard_regression_basic(x, ...)
# Default S3 method
ard_regression_basic(
x,
tidy_fun = broom.helpers::tidy_with_broom_or_parameters,
stats_to_remove = c("term", "var_type", "var_label", "var_class", "label",
"contrasts_type", "contrasts", "var_nlevels"),
...
)
# S3 method for class 'data.frame'
ard_regression_basic(
x,
formula,
method,
method.args = list(),
package = "base",
tidy_fun = broom.helpers::tidy_with_broom_or_parameters,
stats_to_remove = c("term", "var_type", "var_label", "var_class", "label",
"contrasts_type", "contrasts", "var_nlevels"),
...
)
Arguments
- x
(regression model/
data.frame
)
regression model object or a data frame- ...
Arguments passed to
broom.helpers::tidy_plus_plus()
- tidy_fun
(
function
)
a tidier. Default isbroom.helpers::tidy_with_broom_or_parameters
- stats_to_remove
(
character
)
character vector of statistic names to remove. Default isc("term", "var_type", "var_label", "var_class", "label", "contrasts_type", "contrasts", "var_nlevels")
.- formula
(
formula
)
a formula- method
(
string
)
string of function naming the function to be called, e.g."glm"
. If function belongs to a library that is not attached, the package name must be specified in thepackage
argument.- method.args
-
(named
list
)
named list of arguments that will be passed tomethod
.Note that this list may contain non-standard evaluation components. If you are wrapping this function in other functions, the argument must be passed in a way that does not evaluate the list, e.g. using rlang's embrace operator
{{ . }}
. - package
(
string
)
a package name that will be temporarily loaded when function specified inmethod
is executed.
Examples
lm(AGE ~ ARM, data = cards::ADSL) |>
ard_regression_basic()
#> {cards} data frame: 12 x 9
#> variable variable_level context stat_name stat_label stat
#> 1 ARM Xanomeli… regressi… estimate Coeffici… -0.828
#> 2 ARM Xanomeli… regressi… std.error Standard… 1.267
#> 3 ARM Xanomeli… regressi… statistic statistic -0.654
#> 4 ARM Xanomeli… regressi… p.value p-value 0.514
#> 5 ARM Xanomeli… regressi… conf.low CI Lower… -3.324
#> 6 ARM Xanomeli… regressi… conf.high CI Upper… 1.668
#> 7 ARM Xanomeli… regressi… estimate Coeffici… 0.457
#> 8 ARM Xanomeli… regressi… std.error Standard… 1.267
#> 9 ARM Xanomeli… regressi… statistic statistic 0.361
#> 10 ARM Xanomeli… regressi… p.value p-value 0.719
#> 11 ARM Xanomeli… regressi… conf.low CI Lower… -2.039
#> 12 ARM Xanomeli… regressi… conf.high CI Upper… 2.953
#> ℹ 3 more variables: fmt_fun, warning, error
ard_regression_basic(
x = cards::ADSL,
formula = AGE ~ ARM,
method = "lm"
)
#> {cards} data frame: 12 x 9
#> variable variable_level context stat_name stat_label stat
#> 1 ARM Xanomeli… regressi… estimate Coeffici… -0.828
#> 2 ARM Xanomeli… regressi… std.error Standard… 1.267
#> 3 ARM Xanomeli… regressi… statistic statistic -0.654
#> 4 ARM Xanomeli… regressi… p.value p-value 0.514
#> 5 ARM Xanomeli… regressi… conf.low CI Lower… -3.324
#> 6 ARM Xanomeli… regressi… conf.high CI Upper… 1.668
#> 7 ARM Xanomeli… regressi… estimate Coeffici… 0.457
#> 8 ARM Xanomeli… regressi… std.error Standard… 1.267
#> 9 ARM Xanomeli… regressi… statistic statistic 0.361
#> 10 ARM Xanomeli… regressi… p.value p-value 0.719
#> 11 ARM Xanomeli… regressi… conf.low CI Lower… -2.039
#> 12 ARM Xanomeli… regressi… conf.high CI Upper… 2.953
#> ℹ 3 more variables: fmt_fun, warning, error