Analysis results data for paired and non-paired Cohen's D Effect Size Test
using effectsize::cohens_d()
.
Usage
ard_effectsize_cohens_d(data, by, variables, conf.level = 0.95, ...)
ard_effectsize_paired_cohens_d(data, by, variables, id, conf.level = 0.95, ...)
Arguments
- data
(
data.frame
)
a data frame. See below for details.- by
(
tidy-select
)
column name to compare by. Must be a categorical variable with exactly two levels.- variables
(
tidy-select
)
column names to be compared. Must be a continuous variables. Independent tests will be run for each variable.- conf.level
(scalar
numeric
)
confidence level for confidence interval. Default is0.95
.- ...
arguments passed to
effectsize::cohens_d(...)
- id
(
tidy-select
)
column name of the subject or participant ID
Details
For the ard_effectsize_cohens_d()
function, the data is expected to be one row per subject.
The data is passed as effectsize::cohens_d(data[[variable]]~data[[by]], data, paired = FALSE, ...)
.
For the ard_effectsize_paired_cohens_d()
function, the data is expected to be one row
per subject per by level. Before the effect size is calculated, the data are
reshaped to a wide format to be one row per subject.
The data are then passed as
effectsize::cohens_d(x = data_wide[[<by level 1>]], y = data_wide[[<by level 2>]], paired = TRUE, ...)
.
Examples
cards::ADSL |>
dplyr::filter(ARM %in% c("Placebo", "Xanomeline High Dose")) |>
ard_effectsize_cohens_d(by = ARM, variables = AGE)
#> {cards} data frame: 9 x 9
#> group1 variable context stat_name stat_label stat
#> 1 ARM AGE effectsi… estimate Effect S… 0.1
#> 2 ARM AGE effectsi… conf.level CI Confi… 0.95
#> 3 ARM AGE effectsi… conf.low CI Lower… -0.201
#> 4 ARM AGE effectsi… conf.high CI Upper… 0.401
#> 5 ARM AGE effectsi… method method Cohen's D
#> 6 ARM AGE effectsi… mu H0 Mean 0
#> 7 ARM AGE effectsi… paired Paired t… FALSE
#> 8 ARM AGE effectsi… pooled_sd Pooled S… TRUE
#> 9 ARM AGE effectsi… alternative Alternat… two.sided
#> ℹ 3 more variables: fmt_fn, warning, error
# constructing a paired data set,
# where patients receive both treatments
cards::ADSL[c("ARM", "AGE")] |>
dplyr::filter(ARM %in% c("Placebo", "Xanomeline High Dose")) |>
dplyr::mutate(.by = ARM, USUBJID = dplyr::row_number()) |>
dplyr::arrange(USUBJID, ARM) |>
dplyr::group_by(USUBJID) |>
dplyr::filter(dplyr::n() > 1) |>
ard_effectsize_paired_cohens_d(by = ARM, variables = AGE, id = USUBJID)
#> {cards} data frame: 9 x 9
#> group1 variable context stat_name stat_label stat
#> 1 ARM AGE effectsi… estimate Effect S… 0.069
#> 2 ARM AGE effectsi… conf.level CI Confi… 0.95
#> 3 ARM AGE effectsi… conf.low CI Lower… -0.146
#> 4 ARM AGE effectsi… conf.high CI Upper… 0.282
#> 5 ARM AGE effectsi… method method Paired C…
#> 6 ARM AGE effectsi… mu H0 Mean 0
#> 7 ARM AGE effectsi… paired Paired t… TRUE
#> 8 ARM AGE effectsi… pooled_sd Pooled S… TRUE
#> 9 ARM AGE effectsi… alternative Alternat… two.sided
#> ℹ 3 more variables: fmt_fn, warning, error