Usage
ard_proportion_ci(
data,
variables,
by = dplyr::group_vars(data),
conf.level = 0.95,
strata,
weights = NULL,
max.iterations = 10,
method = c("waldcc", "wald", "clopper-pearson", "wilson", "wilsoncc", "strat_wilson",
"strat_wilsoncc", "agresti-coull", "jeffreys")
)
Arguments
- data
(
data.frame
)
a data frame- variables
(
tidy-select
)
columns to include in summaries. Columns must be class<logical>
or<numeric>
values coded asc(0, 1)
.- by
(
tidy-select
)
columns to stratify calculations by- conf.level
(
numeric
)
a scalar in(0, 1)
indicating the confidence level. Default is0.95
- strata, weights, max.iterations
arguments passed to
proportion_ci_strat_wilson()
, whenmethod='strat_wilson'
- method
(
string
)
string indicating the type of confidence interval to calculate. Must be one of 'waldcc', 'wald', 'clopper-pearson', 'wilson', 'wilsoncc', 'strat_wilson', 'strat_wilsoncc', 'agresti-coull', 'jeffreys'. See?proportion_ci
for details.
Examples
ard_proportion_ci(mtcars, variables = c(vs, am), method = "wilson")
#> {cards} data frame: 20 x 8
#> variable context stat_name stat_label stat fmt_fn
#> 1 vs proporti… N N 32 0
#> 2 vs proporti… conf.level conf.lev… 0.95 1
#> 3 vs proporti… estimate estimate 0.438 1
#> 4 vs proporti… statistic statistic 0.5 1
#> 5 vs proporti… p.value p.value 0.48 1
#> 6 vs proporti… parameter parameter 1 0
#> 7 vs proporti… conf.low conf.low 0.282 1
#> 8 vs proporti… conf.high conf.high 0.607 1
#> 9 vs proporti… method method Wilson C… <fn>
#> 10 vs proporti… alternative alternat… two.sided <fn>
#> 11 am proporti… N N 32 0
#> 12 am proporti… conf.level conf.lev… 0.95 1
#> 13 am proporti… estimate estimate 0.406 1
#> 14 am proporti… statistic statistic 1.125 1
#> 15 am proporti… p.value p.value 0.289 1
#> 16 am proporti… parameter parameter 1 0
#> 17 am proporti… conf.low conf.low 0.255 1
#> 18 am proporti… conf.high conf.high 0.577 1
#> 19 am proporti… method method Wilson C… <fn>
#> 20 am proporti… alternative alternat… two.sided <fn>
#> ℹ 2 more variables: warning, error