Compute Analysis Results Data (ARD) for dichotomous summary statistics.
Usage
ard_dichotomous(data, ...)
# S3 method for data.frame
ard_dichotomous(
data,
variables,
by = dplyr::group_vars(data),
strata = NULL,
value = maximum_variable_value(data[variables]),
statistic = everything() ~ c("n", "N", "p"),
denominator = NULL,
fmt_fn = NULL,
stat_label = everything() ~ default_stat_labels(),
...
)
Arguments
- data
(
data.frame
)
a data frame- ...
Arguments passed to methods.
- variables
(
tidy-select
)
columns to include in summaries. Default iseverything()
.- by, strata
-
(
tidy-select
)
columns to tabulate by/stratify by for tabulation. Arguments are similar, but with an important distinction:by
: results are tabulated by all combinations of the columns specified, including unobserved combinations and unobserved factor levels.strata
: results are tabulated by all observed combinations of the columns specified.Arguments may be used in conjunction with one another.
- value
(named
list
)
named list of dichotomous values to tabulate. Default ismaximum_variable_value(data)
, which returns the largest/last value after a sort.- statistic
(
formula-list-selector
)
a named list, a list of formulas, or a single formula where the list element one or more ofc("n", "N", "p")
(or the RHS of a formula).- denominator
(
data.frame
,integer
)
Specify this optional argument to change the denominator, e.g. the"N"
statistic. Default isNULL
. See below for details.- fmt_fn
(
formula-list-selector
)
a named list, a list of formulas, or a single formula where the list element is a named list of functions (or the RHS of a formula), e.g.list(mpg = list(mean = \(x) round(x, digits = 2) |> as.character()))
.- stat_label
(
formula-list-selector
)
a named list, a list of formulas, or a single formula where the list element is either a named list or a list of formulas defining the statistic labels, e.g.everything() ~ list(n = "n", p = "pct")
oreverything() ~ list(n ~ "n", p ~ "pct")
.
Denominators
By default, the ard_categorical()
function returns the statistics "n"
, "N"
, and
"p"
, where little "n"
are the counts for the variable levels, and big "N"
is
the number of non-missing observations. The default calculation for the
percentage is merely p = n/N
.
However, it is sometimes necessary to provide a different "N"
to use
as the denominator in this calculation. For example, in a calculation
of the rates of various observed adverse events, you may need to update the
denominator to the number of enrolled subjects.
In such cases, use the denominator
argument to specify a new definition
of "N"
, and subsequently "p"
.
The argument expects one of the following inputs:
a data frame. Any columns in the data frame that overlap with the
by
/strata
columns will be used to calculate the new"N"
.an integer. This single integer will be used as the new
"N"
a string: one of
"column"
,"row"
, or"cell"
."column"
is equivalent todenominator=NULL
."row"
gives 'row' percentages whereby
/strata
columns are the 'top' of a cross table, and the variables are the rows."cell"
gives percentages where the denominator is the number of non-missing rows in the source data frame.a structured data frame. The data frame will include columns from
by
/strata
. The last column must be named"...ard_N..."
. The integers in this column will be used as the updated"N"
in the calculations.
Examples
ard_dichotomous(mtcars, by = vs, variables = c(cyl, am), value = list(cyl = 4))
#> {cards} data frame: 12 x 11
#> group1 group1_level variable variable_level stat_name stat_label stat
#> 1 vs 0 cyl 4 n n 1
#> 2 vs 0 cyl 4 N N 18
#> 3 vs 0 cyl 4 p % 0.056
#> 4 vs 1 cyl 4 n n 10
#> 5 vs 1 cyl 4 N N 14
#> 6 vs 1 cyl 4 p % 0.714
#> 7 vs 0 am 1 n n 6
#> 8 vs 0 am 1 N N 18
#> 9 vs 0 am 1 p % 0.333
#> 10 vs 1 am 1 n n 7
#> 11 vs 1 am 1 N N 14
#> 12 vs 1 am 1 p % 0.5
#> ℹ 4 more variables: context, fmt_fn, warning, error
mtcars |>
dplyr::group_by(vs) |>
ard_dichotomous(
variables = c(cyl, am),
value = list(cyl = 4),
statistic = ~"p"
)
#> {cards} data frame: 4 x 11
#> group1 group1_level variable variable_level stat_name stat_label stat
#> 1 vs 0 cyl 4 p % 0.056
#> 2 vs 1 cyl 4 p % 0.714
#> 3 vs 0 am 1 p % 0.333
#> 4 vs 1 am 1 p % 0.5
#> ℹ 4 more variables: context, fmt_fn, warning, error