continuous_summary_fns()
returns a named list of summary functions for continuous variables. Some functions include slight modifications to their base equivalents. For example, themin()
andmax()
functions returnNA
instead ofInf
when an empty vector is passed. Statistics"p25"
and"p75"
are calculated withquantile(type = 2)
, which matches SAS's default value.categorical_summary_fns()
returns a named list of summary statistics for categorical variables. Options are"n"
,"N"
, and"p"
. If a user requests, for example, only"p"
, the function will return"n"
and"N"
as well, since they are needed to calculate"p"
. These statistics will be stored as a vector within thetabulation
list element.missing_summary_fns()
returns a named list of summary functions suitable for variable-level summaries, such as number and rate of missing data.
Arguments
- summaries
-
(
character
)
a character vector of results to include in output.continuous_summary_fns()
: Select one or more from 'N', 'mean', 'sd', 'median', 'p25', 'p75', 'min', 'max'.categorical_summary_fns()
: Select one or more from 'n', 'p', 'N'.missing_summary_fns()
: Select one or more from 'N_obs', 'N_miss', 'N_nonmiss', 'p_miss', 'p_nonmiss'.
- other_stats
(named
list
)
named list of other statistic functions to supplement the pre-programmed functions.
Value
continuous_summary_fns()
and missing_summary_fns()
return a named list of summary
functions, categorical_summary_fns()
returns a named list of summary statistics.
Examples
# continuous variable summaries
ard_continuous(
ADSL,
variables = "AGE",
statistic = ~ continuous_summary_fns(c("N", "median"))
)
#> {cards} data frame: 2 x 8
#> variable context stat_name stat_label stat fmt_fn
#> 1 AGE continuo… N N 254 0
#> 2 AGE continuo… median Median 77 1
#> ℹ 2 more variables: warning, error
# categorical variable summaries
ard_categorical(
ADSL,
variables = "AGEGR1",
statistic = ~ categorical_summary_fns(c("n", "N"))
)
#> {cards} data frame: 6 x 9
#> variable variable_level context stat_name stat_label stat
#> 1 AGEGR1 65-80 categori… n n 144
#> 2 AGEGR1 65-80 categori… N N 254
#> 3 AGEGR1 <65 categori… n n 33
#> 4 AGEGR1 <65 categori… N N 254
#> 5 AGEGR1 >80 categori… n n 77
#> 6 AGEGR1 >80 categori… N N 254
#> ℹ 3 more variables: fmt_fn, warning, error
# summary for rates of missing data
ard_missing(
ADSL,
variables = c("AGE", "AGEGR1"),
statistic = ~ missing_summary_fns()
)
#> {cards} data frame: 10 x 8
#> variable context stat_name stat_label stat fmt_fn
#> 1 AGE missing N_obs Vector L… 254 0
#> 2 AGE missing N_miss N Missing 0 0
#> 3 AGE missing N_nonmiss N Non-mi… 254 0
#> 4 AGE missing p_miss % Missing 0 <fn>
#> 5 AGE missing p_nonmiss % Non-mi… 1 <fn>
#> 6 AGEGR1 missing N_obs Vector L… 254 0
#> 7 AGEGR1 missing N_miss N Missing 0 0
#> 8 AGEGR1 missing N_nonmiss N Non-mi… 254 0
#> 9 AGEGR1 missing p_miss % Missing 0 <fn>
#> 10 AGEGR1 missing p_nonmiss % Non-mi… 1 <fn>
#> ℹ 2 more variables: warning, error