continuous_summary_fns()returns a named list of summary functions for continuous variables. Some functions include slight modifications to their base equivalents. For example, themin()andmax()functions returnNAinstead ofInfwhen an empty vector is passed. Statistics"p25"and"p75"are calculated withquantile(type = 2), which matches SAS's default value.categorical_summary_fns()returns a named list of summary statistics for categorical variables. Options are"n","N", and"p". If a user requests, for example, only"p", the function will return"n"and"N"as well, since they are needed to calculate"p". These statistics will be stored as a vector within thetabulationlist element.missing_summary_fns()returns a named list of summary functions suitable for variable-level summaries, such as number and rate of missing data.
Arguments
- summaries
-
(
character)
a character vector of results to include in output.continuous_summary_fns(): Select one or more from 'N', 'mean', 'sd', 'median', 'p25', 'p75', 'min', 'max'.categorical_summary_fns(): Select one or more from 'n', 'p', 'N'.missing_summary_fns(): Select one or more from 'N_obs', 'N_miss', 'N_nonmiss', 'p_miss', 'p_nonmiss'.
- other_stats
(named
list)
named list of other statistic functions to supplement the pre-programmed functions.
Value
continuous_summary_fns() and missing_summary_fns() return a named list of summary
functions, categorical_summary_fns() returns a named list of summary statistics.
Examples
# continuous variable summaries
ard_continuous(
ADSL,
variables = "AGE",
statistic = ~ continuous_summary_fns(c("N", "median"))
)
#> {cards} data frame: 2 x 8
#> variable context stat_name stat_label stat fmt_fn
#> 1 AGE continuo… N N 254 0
#> 2 AGE continuo… median Median 77 1
#> ℹ 2 more variables: warning, error
# categorical variable summaries
ard_categorical(
ADSL,
variables = "AGEGR1",
statistic = ~ categorical_summary_fns(c("n", "N"))
)
#> {cards} data frame: 6 x 9
#> variable variable_level context stat_name stat_label stat
#> 1 AGEGR1 65-80 categori… n n 144
#> 2 AGEGR1 65-80 categori… N N 254
#> 3 AGEGR1 <65 categori… n n 33
#> 4 AGEGR1 <65 categori… N N 254
#> 5 AGEGR1 >80 categori… n n 77
#> 6 AGEGR1 >80 categori… N N 254
#> ℹ 3 more variables: fmt_fn, warning, error
# summary for rates of missing data
ard_missing(
ADSL,
variables = c("AGE", "AGEGR1"),
statistic = ~ missing_summary_fns()
)
#> {cards} data frame: 10 x 8
#> variable context stat_name stat_label stat fmt_fn
#> 1 AGE missing N_obs Vector L… 254 0
#> 2 AGE missing N_miss N Missing 0 0
#> 3 AGE missing N_nonmiss N Non-mi… 254 0
#> 4 AGE missing p_miss % Missing 0 <fn>
#> 5 AGE missing p_nonmiss % Non-mi… 1 <fn>
#> 6 AGEGR1 missing N_obs Vector L… 254 0
#> 7 AGEGR1 missing N_miss N Missing 0 0
#> 8 AGEGR1 missing N_nonmiss N Non-mi… 254 0
#> 9 AGEGR1 missing p_miss % Missing 0 <fn>
#> 10 AGEGR1 missing p_nonmiss % Non-mi… 1 <fn>
#> ℹ 2 more variables: warning, error
