Compute Analysis Results Data (ARD) for categorical summary statistics.
Usage
ard_categorical(data, ...)
# S3 method for class 'data.frame'
ard_categorical(
data,
variables,
by = dplyr::group_vars(data),
strata = NULL,
statistic = everything() ~ c("n", "p", "N"),
denominator = "column",
fmt_fn = NULL,
stat_label = everything() ~ default_stat_labels(),
...
)
Arguments
- data
(
data.frame
)
a data frame- ...
Arguments passed to methods.
- variables
(
tidy-select
)
columns to include in summaries. Default iseverything()
.- by, strata
-
(
tidy-select
)
columns to use for grouping or stratifying the table output. Arguments are similar, but with an important distinction:by
: results are tabulated by all combinations of the columns specified, including unobserved combinations and unobserved factor levels.strata
: results are tabulated by all observed combinations of the columns specified.Arguments may be used in conjunction with one another.
- statistic
(
formula-list-selector
)
a named list, a list of formulas, or a single formula where the list element one or more ofc("n", "N", "p", "n_cum", "p_cum")
(on the RHS of a formula).- denominator
(
string
,data.frame
,integer
)
Specify this argument to change the denominator, e.g. the"N"
statistic. Default is'column'
. See below for details.- fmt_fn
(
formula-list-selector
)
a named list, a list of formulas, or a single formula where the list element is a named list of functions (or the RHS of a formula), e.g.list(mpg = list(mean = \(x) round(x, digits = 2) |> as.character()))
.- stat_label
(
formula-list-selector
)
a named list, a list of formulas, or a single formula where the list element is either a named list or a list of formulas defining the statistic labels, e.g.everything() ~ list(n = "n", p = "pct")
oreverything() ~ list(n ~ "n", p ~ "pct")
.
Denominators
By default, the ard_categorical()
function returns the statistics "n"
, "N"
, and
"p"
, where little "n"
are the counts for the variable levels, and big "N"
is
the number of non-missing observations. The default calculation for the
percentage is merely p = n/N
.
However, it is sometimes necessary to provide a different "N"
to use
as the denominator in this calculation. For example, in a calculation
of the rates of various observed adverse events, you may need to update the
denominator to the number of enrolled subjects.
In such cases, use the denominator
argument to specify a new definition
of "N"
, and subsequently "p"
.
The argument expects one of the following inputs:
-
a string: one of
"column"
,"row"
, or"cell"
."column"
, the default, returns percentages where the sum is equal to one within the variable after the data frame has been subset withby
/strata
."row"
gives 'row' percentages whereby
/strata
columns are the 'top' of a cross table, and the variables are the rows. This is well-defined for a singleby
orstrata
variable, and care must be taken when there are more to ensure the the results are as you expect."cell"
gives percentages where the denominator is the number of non-missing rows in the source data frame.
a data frame. Any columns in the data frame that overlap with the
by
/strata
columns will be used to calculate the new"N"
.an integer. This single integer will be used as the new
"N"
a structured data frame. The data frame will include columns from
by
/strata
. The last column must be named"...ard_N..."
. The integers in this column will be used as the updated"N"
in the calculations.
Other Statistics
In some cases, you may need other kinds of statistics for categorical variables.
Despite the name, ard_continuous()
can be used to obtain these statistics.
In the example below, we calculate the mode of a categorical variable.
get_mode <- function(x) {
table(x) |> sort(decreasing = TRUE) |> names() |> getElement(1L)
}
ADSL |>
ard_continuous(
variables = AGEGR1,
statistic = list(AGEGR1 = list(mode = get_mode))
)
#> {cards} data frame: 1 x 8
#> variable context stat_name stat_label stat fmt_fn
#> 1 AGEGR1 continuo… mode mode 65-80 <fn>
#> i 2 more variables: warning, error
Examples
ard_categorical(ADSL, by = "ARM", variables = "AGEGR1")
#> {cards} data frame: 27 x 11
#> group1 group1_level variable variable_level stat_name stat_label stat
#> 1 ARM Placebo AGEGR1 65-80 n n 42
#> 2 ARM Placebo AGEGR1 65-80 N N 86
#> 3 ARM Placebo AGEGR1 65-80 p % 0.488
#> 4 ARM Placebo AGEGR1 <65 n n 14
#> 5 ARM Placebo AGEGR1 <65 N N 86
#> 6 ARM Placebo AGEGR1 <65 p % 0.163
#> 7 ARM Placebo AGEGR1 >80 n n 30
#> 8 ARM Placebo AGEGR1 >80 N N 86
#> 9 ARM Placebo AGEGR1 >80 p % 0.349
#> 10 ARM Xanomeli… AGEGR1 65-80 n n 55
#> ℹ 17 more rows
#> ℹ Use `print(n = ...)` to see more rows
#> ℹ 4 more variables: context, fmt_fn, warning, error
ADSL |>
dplyr::group_by(ARM) |>
ard_categorical(
variables = "AGEGR1",
statistic = everything() ~ "n"
)
#> {cards} data frame: 9 x 11
#> group1 group1_level variable variable_level stat_name stat_label stat
#> 1 ARM Placebo AGEGR1 65-80 n n 42
#> 2 ARM Placebo AGEGR1 <65 n n 14
#> 3 ARM Placebo AGEGR1 >80 n n 30
#> 4 ARM Xanomeli… AGEGR1 65-80 n n 55
#> 5 ARM Xanomeli… AGEGR1 <65 n n 11
#> 6 ARM Xanomeli… AGEGR1 >80 n n 18
#> 7 ARM Xanomeli… AGEGR1 65-80 n n 47
#> 8 ARM Xanomeli… AGEGR1 <65 n n 8
#> 9 ARM Xanomeli… AGEGR1 >80 n n 29
#> ℹ 4 more variables: context, fmt_fn, warning, error