Compute Analysis Results Data (ARD) for statistics related to data missingness.
Usage
ard_missing(data, ...)
# S3 method for class 'data.frame'
ard_missing(
data,
variables,
by = dplyr::group_vars(data),
statistic = everything() ~ c("N_obs", "N_miss", "N_nonmiss", "p_miss", "p_nonmiss"),
fmt_fn = NULL,
stat_label = everything() ~ default_stat_labels(),
...
)
Arguments
- data
(
data.frame
)
a data frame- ...
Arguments passed to methods.
- variables
(
tidy-select
)
columns to include in summaries. Default iseverything()
.- by
(
tidy-select
)
results are tabulated by all combinations of the columns specified.- statistic
-
(
formula-list-selector
)
a named list, a list of formulas, or a single formula where the list element is a named list of functions (or the RHS of a formula), e.g.list(mpg = list(mean = \(x) mean(x)))
.The value assigned to each variable must also be a named list, where the names are used to reference a function and the element is the function object. Typically, this function will return a scalar statistic, but a function that returns a named list of results is also acceptable, e.g.
list(conf.low = -1, conf.high = 1)
. However, when errors occur, the messaging will be less clear in this setting. - fmt_fn
(
formula-list-selector
)
a named list, a list of formulas, or a single formula where the list element is a named list of functions (or the RHS of a formula), e.g.list(mpg = list(mean = \(x) round(x, digits = 2) |> as.character()))
.- stat_label
(
formula-list-selector
)
a named list, a list of formulas, or a single formula where the list element is either a named list or a list of formulas defining the statistic labels, e.g.everything() ~ list(mean = "Mean", sd = "SD")
oreverything() ~ list(mean ~ "Mean", sd ~ "SD")
.
Examples
ard_missing(ADSL, by = "ARM", variables = "AGE")
#> {cards} data frame: 15 x 10
#> group1 group1_level variable stat_name stat_label stat
#> 1 ARM Placebo AGE N_obs Vector L… 86
#> 2 ARM Placebo AGE N_miss N Missing 0
#> 3 ARM Placebo AGE N_nonmiss N Non-mi… 86
#> 4 ARM Placebo AGE p_miss % Missing 0
#> 5 ARM Placebo AGE p_nonmiss % Non-mi… 1
#> 6 ARM Xanomeli… AGE N_obs Vector L… 84
#> 7 ARM Xanomeli… AGE N_miss N Missing 0
#> 8 ARM Xanomeli… AGE N_nonmiss N Non-mi… 84
#> 9 ARM Xanomeli… AGE p_miss % Missing 0
#> 10 ARM Xanomeli… AGE p_nonmiss % Non-mi… 1
#> 11 ARM Xanomeli… AGE N_obs Vector L… 84
#> 12 ARM Xanomeli… AGE N_miss N Missing 0
#> 13 ARM Xanomeli… AGE N_nonmiss N Non-mi… 84
#> 14 ARM Xanomeli… AGE p_miss % Missing 0
#> 15 ARM Xanomeli… AGE p_nonmiss % Non-mi… 1
#> ℹ 4 more variables: context, fmt_fn, warning, error
ADSL |>
dplyr::group_by(ARM) |>
ard_missing(
variables = "AGE",
statistic = ~"N_miss"
)
#> {cards} data frame: 3 x 10
#> group1 group1_level variable stat_name stat_label stat
#> 1 ARM Placebo AGE N_miss N Missing 0
#> 2 ARM Xanomeli… AGE N_miss N Missing 0
#> 3 ARM Xanomeli… AGE N_miss N Missing 0
#> ℹ 4 more variables: context, fmt_fn, warning, error