Simulation of Progression Free Survival Times
Usage
simul_pfs(
lp_aft,
sigma_aft,
recr_duration,
rate_cens,
n_events,
add_uncensored_pfs = FALSE
)
Arguments
- lp_aft
(
numeric
)
linear predictor values for the accelerate failure time model (AFT).- sigma_aft
(
number
)
standard deviation for the AFT model.- recr_duration
(
number
)
duration of recruitment.- rate_cens
(
number
)
rate for the exponentially distributed censoring process.- n_events
(
count
)
number of events to reach for the study end.- add_uncensored_pfs
(
flag
)
whether to add the uncensored PFS as well to the resultingdata.frame
.
Value
A data.frame
with columns tt_pfs
(PFS time) and ev_pfs
(corresponding
event indicator with 1 for an event and 0 for censored), and optionally
tt_pfs_uncens
.
Examples
set.seed(123)
simul_pfs(
lp_aft = rnorm(100),
sigma_aft = 1,
recr_duration = 0.2,
rate_cens = 2,
n_events = 20
)
#> tt_pfs ev_pfs
#> 1 0.072391026 0
#> 2 0.023879008 1
#> 3 0.129171233 0
#> 4 0.193271142 0
#> 5 0.037677183 0
#> 6 0.064218853 0
#> 7 0.298624611 0
#> 8 0.098425711 1
#> 9 0.102690509 0
#> 10 0.186533053 0
#> 11 0.258201273 0
#> 12 0.246752360 0
#> 13 0.230997062 0
#> 14 0.137052131 0
#> 15 0.262009334 1
#> 16 0.360911995 0
#> 17 0.180787551 0
#> 18 0.178273954 1
#> 19 0.210286983 0
#> 20 0.185082786 1
#> 21 0.028930742 1
#> 22 0.111501575 0
#> 23 0.285093339 0
#> 24 0.096263545 0
#> 25 0.254739407 0
#> 26 0.104978844 0
#> 27 0.216453593 1
#> 28 0.182934469 0
#> 29 0.195344362 0
#> 30 0.279451361 0
#> 31 0.037491821 0
#> 32 0.222336510 0
#> 33 0.281483009 0
#> 34 0.360471274 0
#> 35 0.083872336 0
#> 36 0.123722728 1
#> 37 0.188409287 0
#> 38 0.201573553 0
#> 39 0.193324095 0
#> 40 0.290564901 0
#> 41 0.173332481 0
#> 42 0.023822602 0
#> 43 0.043176233 1
#> 44 0.230803059 0
#> 45 0.168667376 0
#> 46 0.247596144 0
#> 47 0.003760418 1
#> 48 0.002738761 1
#> 49 0.170336318 0
#> 50 0.340096665 0
#> 51 0.310398066 0
#> 52 0.050108371 1
#> 53 0.262469965 0
#> 54 0.296645091 0
#> 55 0.185277166 0
#> 56 0.357749765 0
#> 57 0.313933721 0
#> 58 0.226846021 0
#> 59 0.187742686 0
#> 60 0.040126174 0
#> 61 0.178223857 0
#> 62 0.203858174 0
#> 63 0.049196475 1
#> 64 0.199600613 0
#> 65 0.017168713 0
#> 66 0.286927353 0
#> 67 0.238195006 0
#> 68 0.274430927 1
#> 69 0.359745348 0
#> 70 0.165535135 0
#> 71 0.247356322 0
#> 72 0.110498062 1
#> 73 0.036053721 0
#> 74 0.003948712 0
#> 75 0.118292943 0
#> 76 0.284240219 1
#> 77 0.137125529 0
#> 78 0.191043928 0
#> 79 0.209062573 0
#> 80 0.021038631 1
#> 81 0.355722481 0
#> 82 0.291261875 0
#> 83 0.309393837 0
#> 84 0.194050595 0
#> 85 0.018804923 0
#> 86 0.179013416 0
#> 87 0.008846880 0
#> 88 0.195177166 0
#> 89 0.081592477 1
#> 90 0.218217758 0
#> 91 0.343328364 0
#> 92 0.239031686 0
#> 93 0.173353841 0
#> 94 0.113985230 1
#> 95 0.035541392 0
#> 96 0.280588671 0
#> 97 0.245376392 0
#> 98 0.204379379 0
#> 99 0.186462361 0
#> 100 0.113024097 1